scholarly journals Highly efficient catalytic pyrolysis of polyethylene waste to derive fuel products by novel polyoxometalate/kaolin composites

2020 ◽  
Vol 38 (6) ◽  
pp. 689-695
Author(s):  
Saira Attique ◽  
Madeeha Batool ◽  
Mustansara Yaqub ◽  
Oliver Goerke ◽  
Duncan H. Gregory ◽  
...  

We report here alumina-substituted Keggin tungstoborate/kaolin clay composite materials (KAB/kaolin) as polyethylene cracking catalysts. KAB/kaolin composites with varying concentrations of KAB (10–50 wt.%) were synthesized by the wet impregnation method and successfully characterized by Fourier-transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy analytical techniques. Use of KAB loaded kaolin composites as the catalyst for low-density polyethylene (LDPE) cracking exhibited a higher percentage of polymer conversion (99%), producing 84 wt.% of fuel oil and negligible amount (˂ 1 wt.%) of solid residue while thermal cracking produced ~22 wt.% residue. Furthermore, gas chromatography–mass spectrometry analysis of oil obtained by non-catalytic cracking exhibited a high selectivity to high molecular weight hydrocarbons (C13–C23) compared to the catalytic cracking where 70 mol.% of gasoline range hydrocarbons (C5–C12) were produced. We propose that higher cracking ability of our prepared catalysts might ensue from both Brønsted and Lewis acid sites (from KAB and kaolin respectively), which enhanced the yield of liquid fuel products and reduced the cracking temperature of LDPE. These findings suggest that the prepared composites were cost-effective and excellent cracking catalysts that could be recommended for highly efficient conversion of waste plastic materials to petrochemicals at an industrial scale.

BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Arefeh Dehghani Tafti ◽  
Bi Bi Fatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Naeimeh Salehi

AbstractNano-eggshell/Ti(IV) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. The characterization of nano-eggshell/Ti(IV) was performed using Fourier Transform Infrared spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and Thermo Gravimetric Analysis. Dihydropyrano[2,3-c]pyrazoles were synthesized in the presence of nano-eggshell/Ti(IV) via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are mild condition, short reaction times, easy work-up, high yields, reusability of the catalyst and the absence of toxic organic solvents.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650347
Author(s):  
Amarjeet ◽  
Vinod Kumar

[Formula: see text] ([Formula: see text] = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700[Formula: see text]C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz–5 MHz. Temperature dependence of the dielectric constant of [Formula: see text] was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz–5 MHz. It was found that the electrical conductivity decreases with increasing Cu[Formula: see text] ion content while it increases with the increase in temperature.


Author(s):  
Nitu Bhatnagar ◽  
Avani Pareek

The present study is aimed to observe the difference in the Physico-Chemical characteristics of the marketed and formulated bhasma samples through X-Ray Diffraction analysis (XRD), Dynamic Light Scattering (DLS), Zeta potential, Thermo-Gravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray analysis (EDAX), apart from organoleptic methods. Inductively Coupled Plasma Mass Spectroscopy (ICPMS) analysis was also done to observe the presence of trace and heavy metals so that the safety of all these samples could be ensured. XRD shows variation in oxide nature of zinc as well crystallite size in all bhasma samples. DLS and SEM results show difference in particle size of marketed bhasma samples as compared to formulated Yashada bhasma. EDAX and ICPMS also confirm the alteration in elemental composition of all these bhasma samples. Thus, it can be concluded that these ayurvedic medicines should be prepared strictly using the formulation methods as mentioned in the Ayurvedic texts. This will help the prepared products to adopt the inherent quality of the ancient system of medicine, which shall be useful and devoid of any side effects for human consumption.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 793
Author(s):  
Fahad Al-Mubaddel ◽  
Samsudeen Kasim ◽  
Ahmed A. Ibrahim ◽  
Abdulrhman S. Al-Awadi ◽  
Anis H. Fakeeha ◽  
...  

An environmentally-benign way of producing hydrogen is methane decomposition. This study focused on methane decomposition using Fe and Fe-Ni catalysts, which were dispersed over different supports by the wet-impregnation method. We observed the effect of modifying ZrO2 with La2O3 and WO3 in terms of H2 yield and carbon deposits. The modification led to a higher H2 yield in all cases and WO3-modified support gave the highest yield of about 90% and was stable throughout the reaction period. The reaction conditions were at 1 atm, 800 °C, and 4000 mL(hgcat)−1 space velocity. Adding Ni to Fe/x-ZrO2 gave a higher H2 yield and stability for ZrO2 and La2O3 + ZrO2-supported catalysts whose prior performances and stabilities were very poor. Catalyst samples were analyzed by characterization techniques like X-ray diffraction (XRD), nitrogen physisorption, temperature-programmed reduction (TPR), thermo-gravimetric analysis (TGA), and Raman spectroscopy. The phases of iron and the supports were identified using XRD while the BET revealed a significant decrease in the specific surface areas of fresh catalysts relative to supports. A progressive change in Fe’s oxidation state from Fe3+ to Fe0 was observed from the H2-TPR results. The carbon deposits on Fe/ZrO2 and Fe/La2O3 + ZrO2 are mainly amorphous, while Fe/WO3 + ZrO2 and Fe-Ni/x-ZrO2 are characterized by graphitic carbon.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katarzyna Kozłowicz ◽  
Renata Różyło ◽  
Bożena Gładyszewska ◽  
Arkadiusz Matwijczuk ◽  
Grzegorz Gładyszewski ◽  
...  

Abstract This work aimed at the chemical and structural characterization of powders obtained from chestnut flower honey (HFCh) and honey with Inca berry (HBlu). Honey powders were obtained by spray drying technique at low temperature (80/50 °C) with dehumidified air. Maltodextrin (DE 15) was used as a covering agent. The isolation and evaluation of phenolic compounds and sugars were done by gas chromatography–mass spectrometry analysis. Scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction were performed to determine the morphology of the studied honey powders. The obtained results showed that the content of simple sugars amounted to 72.4 and 90.2 g × 100 g−1 in HFCh and HBlu, respectively. Glucose was found to be the dominant sugar with a concentration of 41.3 and 51.6 g × 100 g−1 in HFCh and HBlu, respectively. 3-Phenyllactic acid and ferulic acid were most frequently found in HFCh powder, whereas m-coumaric acid, benzoic acid, and cinnamic acid were the most common in HBlu powder. The largest changes in the FTIR spectra occurred in the following range of wavenumbers: 3335, 1640, and below 930 cm−1. The X-ray diffraction profiles revealed wide peaks, suggesting that both honey powders are amorphous and are characterized by a short-range order only.


2001 ◽  
Vol 73 (4) ◽  
pp. 525-532 ◽  
Author(s):  
MELLATIE R. FINISIE ◽  
ATCHE JOSUÉ ◽  
VALFREDO T. FÁVERE ◽  
MAURO C. M. LARANJEIRA

Bioceramic composites were obtained from chitosan and hydroxyapatite pastes synthesized at physiological temperature according to two different syntheses approaches. Usual analytical techniques (X-ray diffraction analysis, Fourier transformed infrared spectroscopy, Thermo gravimetric analysis, Scanning electron microscopy, X-ray dispersive energy analysis and Porosimetry) were employed to characterize the resulting material. The aim of this investigation was to study the bioceramic properties of the pastes with non-decaying behavior from chitosan-hydroxyapatite composites. Chitosan, which also forms a water-insoluble gel in the presence of calcium ions, and has been reported to have pharmacologically beneficial effects on osteoconductivity, was added to the solid phase of the hydroxyapatite powder. The properties exhibited by the chitosan-hydroxyapatite composites were characteristic of bioceramics applied as bone substitutes. Hydroxyapatite contents ranging from 85 to 98% (w/w) resulted in suitable bioceramic composites for bone regeneration, since they showed a non-decaying behavior, good mechanical properties and suitable pore sizes.


1970 ◽  
Vol 44 (4) ◽  
pp. 473-478 ◽  
Author(s):  
MS Jamal ◽  
Mohammad Ismail ◽  
M Yunnus Miah ◽  
M Naimul Haque ◽  
Sujit Kumar Banik

Heavy fuel oil (furnace oil) was thermally cracked by thermal cracker under different parametric conditions such as cracking temperature, molar ratio of heavy oil to diesel and cracking time to optimize the yield of the final product. In this thermal cracking process, the yield was gradually increased with the increase in temperature and time. After a certain temperature and time no significant increase in yield was observed. Thermo gravimetric analysis (TGA) was done to observe the percentage of weight loss with increasing temperature. The obtained cracked oil was fractionated by atmospheric vacuum distillation unit. Products obtained from different experiments under different conditions showed almost similar physico-chemical properties. Optimization was done on the basis of yield (%wt). The optimum yield (56.2%) of light petroleum fraction (gasoline) was obtained under the following experimental conditions: cracking temperature: 445°C; molar ratio of furnace oil to diesel 95:05; and cracking time: 30 min. The properties such as density, water content, ash content, pour point, flash point, viscosity, range of boiling point, sulphur content, carbon residue, octane number etc. of the obtained light petroleum fraction were found almost similar to that of the commercial grade gasoline. Key words: Furnace oil; Thermal cracking; Gasoline; Thermo gravimetric analysis. DOI: 10.3329/bjsir.v44i4.4601 Bangladesh J. Sci. Ind. Res. 44(4), 473-478, 2009


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


Sign in / Sign up

Export Citation Format

Share Document