Sustainable landfill leachate treatment

2020 ◽  
Vol 38 (10) ◽  
pp. 1093-1100
Author(s):  
Yudi Wu ◽  
Boya Wang ◽  
Gang Chen

Landfilling is one of the most widely used forms of solid waste disposal, yet the management of landfill leachate is challenging because of the complex composition and high contaminant concentration. This study provides an on-site treatment system to treat 500 m3 day-1 of the leachate generated from the Perdido Landfill in Escambia County, Florida. The main concerns of the landfill leachate are ammonium-nitrogen, total dissolved solids (TDS) and biological oxygen demand (BOD) from the long-term monitoring (from September 1999 to May 2015). To target these major contaminants as well as other pollutants, we designed a wetland treatment system by fully utilizing the existing facilities at the Perdido Landfill site. The modified wetland treatment system consists of five components in series: leachate collection/aeration ponds, anaerobic ponds, aerobic ponds, wetlands and limestone filter ponds. The leachate collection/aeration ponds provide functions of nitrification as well as ammonia and CO2 stripping. The following anaerobic ponds focus on nitrogen removal by denitrification. The BOD is removed in the aerobic ponds. The TDS are removed in the wetlands and limestone filter ponds. In the wetlands, 60% of chloride and 40% of other contaminants are absorbed by Parthenium sp. In the limestone filter ponds, bicarbonate, calcium, magnesium and iron are removed.

2015 ◽  
Vol 802 ◽  
pp. 484-489 ◽  
Author(s):  
Mohd Suffian Yusoff ◽  
Noor Aina Mohamad Zuki

Landfill still remains the most commonly employed treatment for municipal solid waste disposal around the world, which generates a high-strength wastewater with complex constituents referred to as landfill leachate. As consequences, if not properly treated and safely disposed, leachate can migrate into soil and subsoils which might cause severe damage to eco-system of land, surface water and groundwater. Aim of this paper is to establish the optimum parameters of starch-based coagulant as an alternative coagulant to remove suspended solid (SS), colour, turbidity, carbon oxygen demand (COD), and ammoniacal-nitrogen in leachate treatment by using RSM method. Leachate was collected from Matang Landfill Site, Perak, Malaysia. In this paper, the efficiency of Jackfruit seeds starch (JSS) act as a coagulant aid is established by using Kategunya method with percentage yield of 33.67%. The starch obtained is then used together with polyaluminium chloride (PAC) in leachate sample. The removal efficiency was determined by a series of experiments using jar test. By using three independent variables including pH, dosage of PAC and dosage of JSS for Central Composite Design (CCD) of RSM, optimum removal of response parameters is carried out. As a result, optimum removal of COD at pH 5, 523.32 mg/L of PAC, 400 mg/L of JSS gives Prob.>F significantly with only 4.32% error. The results showed that, addition of JSS as coagulant aid also helps to reduce the dosage of PAC as well as JSS in leachate. As a conclusion, JSS can be used as a coagulant aid to PAC.


2011 ◽  
Vol 46 (3) ◽  
pp. 230-238 ◽  
Author(s):  
Sean Speer ◽  
Pascale Champagne ◽  
Bruce Anderson

Cold ambient temperatures can negatively affect the performance of passive and semi-passive landfill leachate treatment systems and decrease treatment efficiency. Cold temperature leachate treatment efficiencies were compared between a commercially available semi-passive treatment system and a passive peat and wood shaving biological trickling filter. The addition of an active fixed-film pretreatment stage in the treatment train was also assessed. Results indicated that the internal temperature of the peat filters was independent of influent water temperature; exothermic reactions maintained internal system temperatures. It was determined that pretreatment of the leachate did not affect the overall removal of chemical oxygen demand (COD), but did increase nitrification in the subsequent passive treatment systems and allowed for the removal of dissolved inorganic constituents prior to the passive treatment system, which will extend the useful life of the entire treatment train. The hybrid-passive treatment systems reduced COD concentrations by 10 ± 3% and 15 ± 3%, in the semi-passive treatment system and the peat and wood shaving biological trickling filter-based systems, respectively, and indicated that nitrifying biomass was starting to populate the treatment systems. It was therefore concluded that operation of these systems would be feasible under cold climate and should be assessed at the pilot-scale.


2013 ◽  
Vol 68 (5) ◽  
pp. 1114-1122 ◽  
Author(s):  
C. H. Sim ◽  
B. S. Quek ◽  
R. B. E. Shutes ◽  
K. H. Goh

Lorong Halus, Singapore's first landfill leachate treatment system, consists of a pre-treatment system (8,000 m2), five constructed reed beds (38,000 m2), five polishing ponds (13,000 m2), an education centre and a learning trail for visitors. Eight species of wetland plants (total 160,000 plants) were selected for their ability to uptake nutrients, tolerance to low phosphorus concentrations and resistance to pest infestations. The wetland was launched in March 2011 and water quality monitoring started in April 2011. The removal efficiencies of the pre-treatment system from April 2011 to August 2012 are biochemical oxygen demand (BOD5) 57.4%; chemical oxygen demand (COD) 23.6%; total suspended solids (TSS) 55.1%; ammoniacal nitrogen (NH4-N) 76.8%; total phosphorus (TP) 33.3% and total nitrogen (TN) 60.2%. Removal efficiencies of the reed beds are BOD5 47.0%; COD 42.2%; TSS 57.0%; NH4-N 82.5%; TP 29.3% and TN 83.9%. Plant growth is generally satisfactory, but the lower than designed volume of leachate has adversely affected some sections of plants and resulted in uneven flow distribution in reed beds. The plant management programme includes improving plant regrowth by harvesting of alternate strips of plants and replanting. The treated effluent meets water quality limits for discharge to the public sewer and is subsequently treated by the NEWater treatment system, which recycles water for industrial and indirect potable use.


Author(s):  
Rajani Ghaju Shrestha ◽  
Daisuke Inoue ◽  
Michihiko Ike

Abstract A constructed wetland (CW) is a low-cost, eco-friendly, easy-to-maintain, and widely applicable technology for treating various pollutants in the waste landfill leachate. This study determined the effects of the selection and compiling strategy of substrates used in CWs on the treatment performance of a synthetic leachate containing bisphenol A (BPA) as a representative recalcitrant pollutant. We operated five types of lab-scale vertical-flow CWs using only gravel (CW1), a sandwich of gravel with activated carbon (CW2) or brick crumbs (CW3), and two-stage hybrid CWs using gravel in one column and activated carbon (CW4) or brick crumbs (CW5) in another to treat synthetic leachate containing BPA in a 7-d sequential batch mode for 5 weeks. CWs using activated carbon (CW2 and CW4) effectively removed ammonium nitrogen (NH4-N) (99–100%), chemical oxygen demand (COD) (93–100%), and BPA (100%), indicating that the high adsorption capacity of activated carbon was the main mechanism involved in their removal. CW5 also exhibited higher pollutant removal efficiencies (NH4-N: 94–99%, COD: 89–98%, BPA: 89–100%) than single-column CWs (CW1 and CW3) (NH4-N: 76–100%, COD: 84–100%, BPA: 51–100%). This indicates the importance of the compiling strategy along with the selection of an appropriate substrate to improve the pollutant removal capability of CWs.


Author(s):  
Siti Nor Farhana Zakaria

Landfill leachate is a hazardous pollutant generated from a landfill site. Discharge of landfill leachate has caused a major contamination to the environment and detrimental to human health. This chapter introduces an alternative method to treat recalcitrant pollutant in leachate by using ozonation with catalyst. The production of hydroxyl radical in ozonation was not enough to oxidize complex molecular structure in the leachate. Theoretically, the addition of catalyst enhances the capacity of radical and accelerates the chemical reaction. The effectiveness of ozonation with Fenton (O3/Fenton), hydrogen peroxide (O3/H2O2), and zirconium tetrachloride (O3/ZrCl4) in removing pollutant such as chemical oxygen demand (COD), color, and improvement of biodegradability by using this process were also discussed in this chapter. Comparison in term of treatment cost and benefits of the application of chemical as catalyst are briefly elaborated at the end of this chapter.


2019 ◽  
Vol 145 (9) ◽  
pp. 04019052 ◽  
Author(s):  
Bishow N. Shaha ◽  
Daniel E. Meeroff ◽  
Kevin Kohn ◽  
Timothy G. Townsend ◽  
John D. Schert ◽  
...  

2019 ◽  
Vol 80 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Ahmed Samir Naje ◽  
Mohammed A. Ajeel ◽  
Isam Mohamad Ali ◽  
Hussein A. M. Al-Zubaidi ◽  
Peter Adeniyi Alaba

Abstract In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


Sign in / Sign up

Export Citation Format

Share Document