Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam

2020 ◽  
Vol 38 (11) ◽  
pp. 1239-1250
Author(s):  
Anna Brunerová ◽  
Hynek Roubík ◽  
Milan Brožek ◽  
Dinh Van Dung ◽  
Le Dinh Phung ◽  
...  

The present research describes an application of high-pressure briquetting technology to the waste management of sugarcane processing in Vietnam. The amount of generated sugarcane bagasse was monitored during sugarcane processing within the street juice production in Hue city, Vietnam. Generated sugarcane bagasse was subjected to fuel parameters analysis within its suitability for direct combustion. The obtained sugarcane bagasse was converted into bio-briquette fuel by a high-pressure briquetting press and its mechanical quality was determined. Results proved that the proportion of generated sugarcane bagasse from whole sugarcane stem mass was equal to 35.45%. This indicated generation of an abundant amount of sugarcane bagasse worldwide in general. Fuel parameters analysis proved high quality level of low ash content = 0.97% and high calorific values (gross calorific value = 18.35 MJ·kg-1, net calorific value = 17.06 MJ·kg-1), which indicated good suitability for direct combustion processes. Indicators of mechanical quality proved the following observations: mechanical durability = 99.29%, compressive strength = 150.82 N∙mm-1 and bulk density = 1022.44 kg·m-3, with all these indicators representing positive results. In general, the observed results indicated suitability of sugarcane bagasse valorization within the production of bio-briquette fuel by using high-pressure briquetting technology. Finally, analysis of such waste biomass proved its great potential for energy recovery, thus, the advantage of its valorization within the sustainable technologies.

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 54 ◽  
Author(s):  
Anna Brunerová ◽  
Hynek Roubík ◽  
Milan Brožek ◽  
Agus Haryanto ◽  
Udin Hasanudin ◽  
...  

The present study investigates the quality changes of wood bio-briquette fuel after the addition of spent coffee ground (SCG) into the initial feedstock materials (sawdust, shavings) in different mass ratios (1:1, 1:3). Analysis of SCGs fuel parameter proved great potential for energy generation by a process of direct combustion. Namely, level of calorific value (GCV = 21.58 MJ∙kg−1), of ash content (Ac = 1.49%) and elementary composition (C = 55.49%, H = 7.07%, N = 2.38%, O = 33.41%) supports such statement. A comparison with results of initial feedstock materials exhibited better results of SCG in case of its calorific value and elementary composition. Bulk density ρ (kg·m−3) and mechanical durability DU (%) of bio-briquette samples from initial feedstock materials were following for sawdust: ρ = 1026.39 kg·m−3, DU = 98.44% and shavings: ρ = 1036.53 kg·m−3, DU = 96.70%. The level of such mechanical quality indicators changed after the addition of SCG. Specifically, SCG+sawdust mixtures achieved ρ = 1077.49 kg·m−3 and DU = 90.09%, while SCG + shavings mixtures achieved ρ = 899.44 kg·m−3 and DU = 46.50%. The addition of SCG increased wood bio-briquettes energy potential but decreased its mechanical quality. Consequently, the addition of SCG in wood bio-briquette has advantages, but its mass ratio plays an important key role.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1192
Author(s):  
Aneta Szymajda ◽  
Grażyna Łaska ◽  
Magdalena Joka

Recently, biomass application as a renewable energy source is increasing worldwide. However, its availability differs in dependence on the location and climate, therefore, agricultural residues as cow dung (CD) are being considered to supply heat and/or power installation. This paper aims at a wide evaluation of CD fuel properties and its prospect to apply in the form of pellets to direct combustion installations. Therefore, the proximate, ultimate composition and calorific value were analyzed, then pelletization and combustion tests were performed, and the ash characteristics were tested. It was found that CD is a promising source of bioenergy in terms of LHV (16.34 MJ·kg−1), carbon (44.24%), and fixed carbon (18.33%) content. During pelletization, CD showed high compaction properties and at a moisture content of 18%,and the received pellets’ bulk density reached ca. 470 kg·m−3 with kinetic durability of 98.7%. While combustion, in a fixed grate 25 kW boiler, high emissions of CO, SO2, NO, and HCl were observed. The future energy sector might be based on biomass and this work shows a novel approach of CD pellets as a potential source of renewable energy available wherever cattle production is located.


2021 ◽  
Vol 235 (3) ◽  
pp. 281-294
Author(s):  
Abida Kausar ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal

Abstract Sugarcane bagasse waste biomass (SBWB) efficacy for the adsorption of Zr(IV) was investigated in batch and column modes. The process variables i.e. pH 1–4 (A), adsorbent dosage 0.0–0.3 g (B), and Zr(IV) ions initial concentration 25–200 mg/L (C) were studied. The experiments were run under central composite design (CCD) and data was analysed by response surface methodology (RSM) methodology. The factor A, B, C, AB interaction and square factor A2, C2 affected the Zr(IV) ions adsorption onto SBWB. The quadratic model fitted well to the adsorption data with high R2 values. The effect of bed height, flow rate and Zr(IV) ions initial concentration was also studied for column mode adsorption and efficiency was evaluated by breakthrough curves as well as Bed Depth Service and Thomas models. Bed height and Zr(IV) ions initial concentration enhanced the adsorption of capacity of Zr(IV) ions, whereas flow rate reduced the column efficiency.


2010 ◽  
Vol 41 (2) ◽  
pp. 29
Author(s):  
Giovanni Cascone ◽  
Alessandro D'Emilio ◽  
Erika Buccellato

In this work a characterization of the waste biomass originating from a rose cultivation under greenhouse was carried out. Two types of biomass were examined: one made of both branches and leaves, and the other made up only of branches. For each type of biomass the following properties were determined: percentage of carbon, hydrogen and nitrogen, content of moisture, volatile matter and ashes, gross and net calorific value. The results show that the biomass made of only branches has a better quality than the biomass with leaves for use in thermo-chemical processes.


2012 ◽  
Vol 33 (2) ◽  
pp. 349-356 ◽  
Author(s):  
Alireza Bahadori ◽  
Gholamreza Zahedi ◽  
Sohrab Zendehboudi ◽  
Ahmad Jamili

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1170
Author(s):  
Róbert Findorák ◽  
Jaroslav Legemza ◽  
Mária Fröhlichová ◽  
Gabriela Fabriciová ◽  
Martina Džupková

The use of lignin can be one of the methods of coke powder substitution in the agglomeration process. This article specifies the material research of lignin and the technological and ecological parameters of the agglomeration process in laboratory conditions using biomass lignin. The methodology of the Raman and infrared spectroscopy, representing a new approach in the analysis and assessment for the purposes of material characteristics for the agglomeration process, was applied to study the structure of carbonaceous matter. The material research of lignin has determined that its calorific value corresponds to ca. 80% of the calorific value of coke powder, while its reactivity is higher than that of the coke. Although the substitution of coke powder using different types of waste biomass (e.g., wood sawdust) in the production of the agglomerate is limited to the maximum of 8–15%, in case of lignin, more than 20% can be substituted, while the standard properties of the produced agglomerate are maintained. The lower emissions of sulfur and nitrogen oxides as well as the reduction of carbon footprint in the agglomeration process as a result of the so-called zero CO2 balance in the formation and processing of the biomass represent its positive aspects. Based on the laboratory research of lignin, up to a 50% substitution of coke powder with this type of biomass can be predicted for the technology of agglomerate production in real operation.


2020 ◽  
Vol 849 ◽  
pp. 40-46
Author(s):  
Denny Irawati ◽  
David Usman ◽  
Naresvara Nircela Pradipta

In Indonesia, Casuarina montana usually planted as a road shading tree or in the home garden. This tree will be pruned periodically to reduce the amount of the canopy and maintain the beauty of its shape. Pruning biomass usually consists of the tip of the stem, branches, twigs, and leaves. The biomass has potency for energy or chemicals sources. This study aims to know about energy potential of various types of C. montana biomass and charcoal properties in different carbonization temperature. Six types of biomass from pruning waste of C. montana were used as samples. Branch has high potency as α-cellulose source, while bark including twig bark, branch bark, or stem bark have high potency as lignin source. When it is used as direct fuel (firewood), all biomass of C. montana possess quite high calorific value. When it is converted to be charcoal, temperature of 300°C is good for carbonizing the biomass twig, twig bark, branch bark, and stem bark, while biomass branch and stem need temperature of 400°C.


2015 ◽  
pp. 1-8 ◽  
Author(s):  
J.F. Castañón-Rodríguez ◽  
J. Welti-Chanes ◽  
A.J. Palacios ◽  
B. Torrestiana-Sanchez ◽  
J.A. Ramírez de León ◽  
...  

2011 ◽  
Vol 222 ◽  
pp. 305-308 ◽  
Author(s):  
Idzumi Okajima ◽  
Takeshi Sako

High pressure superheated steam above the critical temperature (374oC) and below the critical pressure (22.1MPa) of water was used to produce hydrogen gas from waste biomass efficiently. The targets are large amount of waste biomass such as livestock excrement and paper sludge. We investigated the effects of reaction temperature, pressure, time, catalyst and molar ratio of water to carbon in biomass on the decomposition efficiency of waste biomass and the productivity of hydrogen. Almost 100% of the decomposition efficiency and 1350-1550cm3 of hydrogen production per gram of dry biomass were realized in the presence of KOH catalyst at 700oC, 10MPa, 20min and 20 of molar ratio of water to carbon in biomass.


2017 ◽  
Vol 224 ◽  
pp. 639-647 ◽  
Author(s):  
Andréia Toscan ◽  
Ana Rita C. Morais ◽  
Susana M. Paixão ◽  
Luís Alves ◽  
Jürgen Andreaus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document