Evaluation of skin irritation following weathered crude oil exposure in two mouse strains

2020 ◽  
Vol 36 (10) ◽  
pp. 788-799
Author(s):  
Jesse M Kemp ◽  
Lerin R Luckett-Chastain ◽  
Kaitlin N Calhoun ◽  
Benjamin Frempah ◽  
Tayler R Schartz ◽  
...  

Petroleum crude oil spills are common and vary in size and scope. Spill response workers throughout the course of remediation are exposed to so-called weathered oil and are known to report diverse health effects, including contact dermatitis. A murine model of repeated exposure to weathered marine crude oil was employed utilizing two strains of mice, C57BL/6 and BALB/c, to investigate the pathology of this irritant and identify the principal hydrocarbon components deposited in skin. Histopathology demonstrated clear signs of irritation in oil-exposed skin from both mouse strains, characterized by prominent epidermal hyperplasia (acanthosis). BALB/c mice exposed to oil demonstrated more pronounced irritation compared with C57BL/6 mice, which was characterized by increased acanthosis as well as increased inflammatory cytokine/chemokine protein expression of IL-1β, IL-6, CXCL10, CCL2, CCL3, CCL4, and CCL11. A gas chromatography/mass spectrometry method was developed for the identification and quantification of 42 aliphatic and EPA priority aromatic hydrocarbons from full thickness skin samples of C57BL/6 and BALB/c mice exposed to oil samples. Aromatic hydrocarbons were not detected in skin; however, aliphatic hydrocarbons in skin tended to accumulate with carbon numbers greater than C16. These preliminary data and observations suggest that weathered crude oil is a skin irritant and this may be related to specific hydrocarbon components, although immune phenotype appears to impact skin response as well.

2021 ◽  
Author(s):  
Eman Afkar ◽  
Aly M. Hafez ◽  
Rashid I.H. Ibrahim ◽  
Munirah Aldayel

Abstract In this study, two bacterial strains isolated from an oil-contaminated soil, designated as AramcoS2 and AramcoS4 were able to degrade crude oil, long-chain n-alkanes of C10 to C20; (n-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane n-nonadecane, and n-eicosane) and polycyclic aromatic hydrocarbons (PAHs) including biphenyl, naphthalene, and anthracene. Gas chromatography-mass spectrometry (GC-MS) technique was conducted to analyze and identify the crude oil residues after biodegradation. AramcoS2 and AramcoS4 were able to reduce the concentration of long-chain n-alkanes of C10-C20 efficiently on average by 77% of the original concentration. Both isolates could also degrade PAHs on average by 67% of the original concentration within 7 and 14 days of incubation at 30ºC, pH=6.8±0.2. The 16S rRNA gene sequences of AramcoS2 and S4 classified these isolates as Actinobacteria; well-known alkanes and PAHs degraders. The nucleotide sequences of AramcoS2 and AramcoS4 were submitted to the GenBank database under the accession numbers MN142506 and MN142551, respectively. Both isolates can be used to restore the environments contaminated with crude oil components. They should be of great practical significance both in bioremediation of soil contaminated with crude oil and bio-treatment of oil spills on surface water.


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
RIRYN NOVIANTY ◽  
ANNISA HIDAYAH ◽  
SARYONO SARYONO ◽  
AMIR AWALUDDIN ◽  
NOVA WAHYU PRATIWI ◽  
...  

Abstract. Novianty R, Saryono, Awaluddin A, Pratiwi NW, Hidayah A, Juliantari E. 2021. The diversity of fungi consortium isolated from polluted soil for degrading petroleum hydrocarbon. Biodiversitas 22: 5077-5084. One of the major problems in the petroleum industry nowadays is crude oil spills. Riau Province, Sumatra is one of the largest oil producers in Indonesia. Accidental releases of petroleum products are of particular concern to the environment. The process of drilling and refining petroleum generates a large amount of oil sludge. One of the effective technologies used in the waste degradation process is bioremediation using certain microorganisms. The prime objective of the current research was to evaluate the efficiency of fungi consortiums in crude oil degradation in Bumi Siak Pusako-Pertamina Hulu, Indonesia. There are three potential fungi isolates as petroleum hydrocarbon degradation agents with four consortium variations. The parameter values of Optical Density (OD), pH, and diluted CO2 were measured on 0, 4, 8, and 16 days. To evaluate the fungal biodegradation activity using Gas Chromatography-Mass Spectrometry (GC-MS). The result showed that consortium II (KF II) has the highest potential to degrade petroleum hydrocarbon (50.61%). The visual GC-MS examination confirmed a decrease in the peak area for eight hydrocarbon compounds, indicating the efficiency of the fungi in the oil decomposition and dismantling of hydrocarbons. Our findings may provide new information on native fungal resources from chronically contaminated terrestrial environments, and will be useful for petroleum-contaminated bioremediation and other industrial applications.  


2018 ◽  
Vol 20 (3) ◽  
pp. 465-470

<p>In this study, the potential use of Azolla filiculoides Lam. for the bioremediative solution to polycyclic aromatic hydrocarbon (PAH) pollution due to crude oil spills in freshwater was investigated. The plants were grown in nitrogen-free Hoagland nutrient solution media containing 0.05%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5% crude oil by volume for 15 days under greenhouse conditions. Relative growth rates of A. filiculoides decreased in the presence of crude oil in a concentration-dependent manner. The probable influence of A. filiculoides on the biodegradation of polycyclic aromatic hydrocarbons was measured by using synchronous UV fluorescence spectroscopy. GC-MS analysis were also carried out to elucidate the behavior of the oil in experimental and control samples. Although 1-2 rings PAHs have not been encountered in control or plant samples, the measured intensity for 3-4 ring PAHs in plant samples was remarkably lower in comparison to the control. Furthermore, these results demonstrated that the predominant efficacy of the A. filiculoides was for 3-4 ring PAHs at the range 0.05 to 0.2% crude oil concentrations. It could be concluded that the bioremediative potential of A. filiculoides for the removal of polycyclic aromatic hydrocarbons strongly depends on the amount of oil in the contaminated water resource. In other words, A. filiculoides could be used more effectively after the removal of excess crude oil in the spilled freshwater areas.</p>


1978 ◽  
Vol 35 (5) ◽  
pp. 510-520 ◽  
Author(s):  
John M. Teal ◽  
Kathryn Burns ◽  
John Farrington

We have analyzed the two- and three-ring aromatic hydrocarbons from the Wild Harbor oil spill in September 1969 and the Winsor Cove oil spill in October 1974, in intertidal marsh sediments, using glass capillary gas-chromatographic and mass-fragmentographic analyses. Naphthalenes with 0–3 alkyl substitutions and phenanthrenes with 0–2 substitutions decreased in concentration with time in surface sediments. The more substituted aromatics decreased relatively less and in some cases actually increased in absolute concentration. The changes in composition of the aromatic fraction have potential consequences for the ecosystem and provide insight into geochemical processes of oil weathering. Key words: oil pollution, aromatic hydrocarbons; gas chromatography; gas chromatography–mass spectrometry; geochemistry; marsh; sediments; oil spills


Author(s):  
Christopher Onyemaechi Ezike ◽  
Felix Okaliwe Echor

One hundred and twenty (120) fingerlings of Clarias gariepinus (mean weight: 0.96 &plusmn; 0.1g) were randomly exposed to 4 experimental treatments of petroleum, based on LC50 values (6.4mg/L of crude oil, 8.7mg/L of petrol, 8.0mg/L of kerosene and 7.8mg/L of diesel oil) and replicated thrice, to determine polycyclic aromatic hydrocarbons (PAH) in exposed fish for 96 h. There was no significant difference (P &gt; 0.05) in total (PAHs) between crude oil (97.1 ng/uL) and diesel (97.2 ng/uL) exposed fish and also between petrol (53.2 ng/uL) and kerosene (49.6 ng/uL) exposed fish, but there was a significant difference (P &lt; 0.05) in PAH levels of the crude oil/diesel exposed -groups of fish compared to petrol/kerosene exposed -groups of fish (97.1/97.2 and 53.2/49.6 ng/uL). Naphthalene correlated positively to benzo a anthracene (r=0.672, (P &lt; 0.05), benzo b fluoranthene (r=0.681, P &lt; 0.05) and chrysene (r=0.615, P &lt; 0.05) but did not correlate to fluorene. Benzo a anthracene correlated positively to benzo a pyrene (r=0.578, P &lt; 0.05), phenathrene (r=0.685, P &lt; 0.05) but did not correlate to acenaphthene. Fluorene correlated positively to benzo a pyrene (r=0.695, P &lt; 0.05) but did not correlate to chrysene. Chrysene correlated positively to dibenzo a,h, pyrene (r=0.658, P &lt; 0.05) to phenathrene and benzo b fluoranthene (r=0.659, P&lt; 0.05). Indeno 123 cd- pyrene and fluranthene however did not correlate to other PAHs except naphthanene, acenaphthene and acenaphthylene. The level of PAH in fish may translate to the toxicity effect since crude oil and diesel with lower LC50 (6.4 and 7.8 mg/L)&nbsp;&nbsp; deposited greater PAH than kerosene and petrol with higher LC50 (8.7 and 8.0 mg/L) in fingerlings of C. gariepinus. High risk to cancer disorders may occur in exposed fish to petroleum with high incidence of fluorene , anthracene, pyrene and benz a anthracene which correlated positively to benzo a pyrene which provide some basis for predicting impact of oil spills on fingerling population.


1995 ◽  
Vol 1995 (1) ◽  
pp. 864-865
Author(s):  
Paul D. Boehm ◽  
Helder J. Costa

ABSTRACT Transplanted bivalves were used as sentinel organisms to assess bioavailability of San Joaquin Valley (SJV) crude oil residues in impacted sediments four years following the 1988 Shell Martinez Refinery spill in Suisun Bay, California. Sediments, bivalves exposed for three months, and control (unexposed) bivalves were analyzed by gas chromatography/mass spectrometry (GC/MS) for poly nuclear aromatic hydrocarbons (PAHs). The study documented a range of weathering stages, and a range of mixtures of SJV crude oil with another petrogenic source, pyrogenic PAHs, and diagenic alkyl PAHs in Peyton Slough intertidal sediments four years following the spill. Less-weathered SJV oil residues remaining in the estuarine sediments were more bioavailable than the intermediate or advanced weathered residues, and more bioavailable than the pyrogenic PAHs that comprise the background PAHs in the Suisun Bay sediments.


2021 ◽  
Author(s):  
Kelly S Ireland ◽  
Kathryn Milligan-Myhre

Aquatic oil spills have resounding effects on surrounding ecosystems, and thus significant resources are committed to oil spill responses to remove the oil from the environment as quickly as possible. Oil has immunotoxic effects and may be particularly harmful to larval and juvenile fish as it can cause a number of developmental defects and stunt growth. In spite of significant efforts to clean oil, it is unclear whether larval and juvenile fish can recover from the effects of oil and no work has been done on the effect crude oil has on developing threespine stickleback (Gasterosteus aculeatus) fish. Threespine stickleback are a ubiquitous sentinel species in the northern hemisphere and are an important food source for many larger, economically valuable fish. As fish with fully marine, anadromous, and freshwater populations, stickleback are exposed to oil in a variety of aquatic environments. We hypothesized that oil exposure would suppress both growth and immunity of developing stickleback, but that fish health could be recovered by removal of the crude oil. Fish were exposed to Alaska North Slope crude oil and then were moved to water without crude oil for two weeks (depuration). Measurements of growth and immunity were taken before and after the depuration. We found that crude oil effected different developmental pathways independently, significantly impacting some but not others. This is the first study to examine the effect crude oil has on early stages of stickleback development, and that stickleback fish are unable to recover from exposure after being transferred to clean water for two-weeks, suggesting larval/juvenile stickleback exposed to crude oil need longer than two-weeks to recover if they are able to recover at all.


2020 ◽  
Vol 3 (1) ◽  
pp. 53 ◽  
Author(s):  
Adi Setyo Purnomo ◽  
Hamdan Dwi Rizqi ◽  
Lia Harmelia

Crude oil spills pose a serious threat to the marine environment. This is due to crude oil, in large part, is composed of aromatic, aliphatic, and alicyclic hydrocarbons which are toxic, carcinogenic, and mutagenic to the marine life. However, the degradation of crude oil spills with bacteria in simulated seawater media is rarely reported. In this study, oil spill in the seawater, especially petroleum, had been successfully degraded by bacterium culture Bacillus subtilis in simulated seawater under 7 and 14 days incubation.  Simulated seawater had synthesized based on ASTM D1141-98 for Standard Practice for the Preparation of Substitute Ocean Water. The petroleum recovery was analyzed using Gas chromatography-mass spectrometry.  In this research, the optimum recovery value of crude oil degradation by the bacterial culture obtained by octadecadienoic acid compound gave a percentage recovery of 8.20% and 8.87% after 7 and 14 days of incubation, respectively. This result indicated that the B. subtilis culture has the ability to degrade crude oil spill in simulated sea water.


2021 ◽  
Vol 890 (1) ◽  
pp. 012037
Author(s):  
G Abidin ◽  
A S Leksono ◽  
Y Risjani ◽  
S Kingtong

Abstract Oil spills potentially effect exposed organisms at various stage of life. This work aimed to access health risk of crude oil to larva development of a sessile organism the Black scar oyster Crassostrea iredalei by using water accommodate fraction (WAF) of crude oil. Male and female gametes was collect and fertilized to obtained larvae at cleavage stage. The larvae were then incubate in various concentrations of WAF (0, 6.25, 12.5, 25, 50, and 100 %). After 24 hour of exposure, normal D-shaped veliger larva (D-larva) was observe. The result showed that WAF crude oil affected the development and the successful of D-larva development. Severity of WAF effect was increasing with dosages of exposure. The abnormal larva developments were increasing in the high concentrations. The information obtaining from current work is important for health risk assessment of crude oil contamination incident in marine ecosystem. This study will also contribute valuable knowledge needed for aquaculture to know effect of crude oil spill to oyster farming area.


2015 ◽  
Vol 81 (13) ◽  
pp. 4263-4276 ◽  
Author(s):  
Seong-Jae Kim ◽  
Ohgew Kweon ◽  
John B. Sutherland ◽  
Hyun-Lee Kim ◽  
Richard C. Jones ◽  
...  

ABSTRACTWe investigated the response of the hydrocarbon-degradingMycobacterium vanbaaleniiPYR-1 to crude oil from the BP Deepwater Horizon (DWH) spill, using substrate depletion, genomic, and proteome analyses.M. vanbaaleniiPYR-1 cultures were incubated with BP DWH crude oil, and proteomes and degradation of alkanes and polycyclic aromatic hydrocarbons (PAHs) were analyzed at four time points over 30 days. Gas chromatography-mass spectrometry (GC-MS) analysis showed a chain length-dependent pattern of alkane degradation, with C12and C13being degraded at the highest rate, although alkanes up to C28were degraded. Whereas phenanthrene and pyrene were completely degraded, a significantly smaller amount of fluoranthene was degraded. Proteome analysis identified 3,948 proteins, with 876 and 1,859 proteins up- and downregulated, respectively. We observed dynamic changes in protein expression during BP crude oil incubation, including transcriptional factors and transporters potentially involved in adaptation to crude oil. The proteome also provided a molecular basis for the metabolism of the aliphatic and aromatic hydrocarbon components in the BP DWH crude oil, which included upregulation of AlkB alkane hydroxylase and an expression pattern of PAH-metabolizing enzymes different from those in previous proteome expression studies of strain PYR-1 incubated with pure or mixed PAHs, particularly the ring-hydroxylating oxygenase (RHO) responsible for the initial oxidation of aromatic hydrocarbons. Based on these results, a comprehensive cellular response ofM. vanbaaleniiPYR-1 to BP crude oil was proposed. This study increases our fundamental understanding of the impact of crude oil on the cellular response of bacteria and provides data needed for development of practical bioremediation applications.


Sign in / Sign up

Export Citation Format

Share Document