Evaluation of menstrual blood stem cells seeded in biocompatible Bombyx mori silk fibroin scaffold for cardiac tissue engineering

2014 ◽  
Vol 29 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Maryam Rahimi ◽  
Homa Mohseni-Kouchesfehani ◽  
Amir-Hassan Zarnani ◽  
Sahba Mobini ◽  
Shohreh Nikoo ◽  
...  
2021 ◽  
Vol 22 (13) ◽  
pp. 6774
Author(s):  
Giedrė Skliutė ◽  
Raminta Baušytė ◽  
Veronika Borutinskaitė ◽  
Giedrė Valiulienė ◽  
Algirdas Kaupinis ◽  
...  

When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues—the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins’ expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Traian V. Chirila

Fibroin is a fibrous protein that can be conveniently isolated from the silk cocoons produced by the larvae of Bombyx mori silk moth. In its form as a hydrogel, Bombyx mori silk fibroin (BMSF) has been employed in a variety of biomedical applications. When used as substrates for biomaterial-cells constructs in tissue engineering, the oxygen transport characteristics of the BMSF membranes have proved so far to be adequate. However, over the past three decades the BMSF hydrogels have been proposed episodically as materials for the manufacture of contact lenses, an application that depends on substantially elevated oxygen permeability. This review will show that the literature published on the oxygen permeability of BMSF is both limited and controversial. Additionally, there is no evidence that contact lenses made from BMSF have ever reached commercialization. The existing literature is discussed critically, leading to the conclusion that BMSF hydrogels are unsuitable as materials for contact lenses, while also attempting to explain the scarcity of data regarding the oxygen permeability of BMSF. To the author’s knowledge, this review covers all publications related to the topic.


2021 ◽  
pp. 088532822110185
Author(s):  
Yuksel Cetin ◽  
Merve G Sahin ◽  
Fatma N Kok

Cardiac tissue engineering focusing on biomaterial scaffolds incorporating cells from different sources has been explored to regenerate or repair damaged area as a lifesaving approach.The aim of this study was to evaluate the cardiomyocyte differentiation potential of human adipose mesenchymal stem cells (hAD-MSCs) as an alternative cell source on silk fibroin (SF) scaffolds for cardiac tissue engineering. The change in surface morphology of SF scaffolds depending on SF concentration (1–6%, w/v) and increase in their porosity upon application of unidirectional freezing were visualized by scanning electron microscopy (SEM). Swelling ratio was found to increase 2.4 fold when SF amount was decreased from 4% to 2%. To avoid excessive swelling, 4% SF scaffold with swelling ratio of 10% (w/w) was chosen for further studies.Biodegradation rate of SF scaffolds depended on enzymatic activity was found to be 75% weight loss of SF scaffolds at the day 14. The phenotype of hAD-MSCs and their multi-linage potential into chondrocytes, osteocytes, and adipocytes were shown by flow cytometry and immunohistochemical staining, respectively.The viability of hAD-MSCs on 3D SF scaffolds was determined as 90%, 118%, and 138% after 1, 7, and 14 days, respectively. The use of 3D SF scaffolds was associated with increased production of cardiomyogenic biomarkers: α-actinin, troponin I, connexin 43, and myosin heavy chain. The fabricated 3D SF scaffolds were proved to sustain hAD-MSCs proliferation and cardiomyogenic differentiation therefore, hAD-MSCs on 3D SF scaffolds may useful tool to regenerate or repair damaged area using cardiac tissue engineering techniques.


Cytotherapy ◽  
2017 ◽  
Vol 19 (12) ◽  
pp. 1474-1490 ◽  
Author(s):  
Mina Fathi-Kazerooni ◽  
Gholamreza Tavoosidana ◽  
Masoud Taghizadeh-Jahed ◽  
Sayeh Khanjani ◽  
Hananeh Golshahi ◽  
...  

2019 ◽  
Vol 25 (41) ◽  
pp. 6190-6204 ◽  
Author(s):  
Pan-Pan Cen ◽  
Lin-Xiao Fan ◽  
Jie Wang ◽  
Jia-Jia Chen ◽  
Lan-Juan Li

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
I. Uzieliene ◽  
G. Urbonaite ◽  
Z. Tachtamisevaite ◽  
A. Mobasheri ◽  
E. Bernotiene

Menstrual blood is a unique body fluid that contains mesenchymal stem cells (MSCs). These cells have attracted a great deal of attention due to their exceptional advantages including easy access and frequently accessible sample source and no need for complex ethical and surgical interventions, as compared to other tissues. Menstrual blood-derived MSCs possess all the major stem cell properties and even have a greater proliferation and differentiation potential as compared to bone marrow-derived MSCs, making them a perspective tool in a further clinical practice. Although the potential of menstrual blood stem cells to differentiate into a large variety of tissue cells has been studied in many studies, their chondrogenic properties have not been extensively explored and investigated. Articular cartilage is susceptible to traumas and degenerative diseases, such as osteoarthritis, and has poor self-regeneration capacity and therefore requires more effective therapeutic technique. MSCs seem promising candidates for cartilage regeneration; however, no clinically effective stem cell-based repair method has yet emerged. This chapter focuses on studies in the field of menstrual blood-derived MSCs and their chondrogenic differentiation potential and suitability for application in cartilage regeneration. Although a very limited number of studies have been made in this field thus far, these cells might emerge as an efficient and easily accessible source of multipotent cells for cartilage engineering and cell-based chondroprotective therapy.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Imam Rosadi ◽  
Karina Karina ◽  
Iis Rosliana ◽  
Siti Sobariah ◽  
Irsyah Afini ◽  
...  

Abstract Background Cartilage tissue engineering is a promising technique for repairing cartilage defect. Due to the limitation of cell number and proliferation, mesenchymal stem cells (MSCs) have been developed as a substitute to chondrocytes as a cartilage cell-source. This study aimed to develop cartilage tissue from human adipose-derived stem cells (ADSCs) cultured on a Bombyx mori silk fibroin scaffold and supplemented with 10% platelet-rich plasma (PRP). Methods Human ADSCs and PRP were characterized. A silk fibroin scaffold with 500 μm pore size was fabricated through salt leaching. ADSCs were then cultured on the scaffold (ADSC-SS) and supplemented with 10% PRP for 21 days to examine cell proliferation, chondrogenesis, osteogenesis, and surface marker expression. The messenger ribonucleic acid (mRNA) expression of type 2 collagen, aggrecan, and type 1 collagen was analysed. The presence of type 2 collagen confirming chondrogenesis was validated using immunocytochemistry. The negative and positive controls were ADSC-SS supplemented with 10% foetal bovine serum (FBS) and ADSC-SS supplemented with commercial chondrogenesis medium, respectively. Results Cells isolated from adipose tissue were characterized as ADSCs. Proliferation of the ADSC-SS PRP was significantly increased (p < 0.05) compared to that of controls. Chondrogenesis was observed in ADSC-SS PRP and was confirmed through the increase in glycosaminoglycans (GAG) and transforming growth factor-β1 (TGF-β1) secretion, the absence of mineral deposition, and increased surface marker proteins on chondrogenic progenitors. The mRNA expression of type 2 collagen in ADSC-SS PRP was significantly increased (p < 0.05) compared to that in the negative control on days 7 and 21; however, aggrecan was significantly increased on day 14 compared to the controls. ADSC-SS PRP showed stable mRNA expression of type 1 collagen up to 14 days and it was significantly decreased on day 21. Confocal analysis showed the presence of type 2 collagen in the ADSC-SS PRP and positive control groups, with high distribution outside the cells forming the extracellular matrix (ECM) on day 21. Conclusion Our study showed that ADSC-SS with supplemented 10% PRP medium can effectively support chondrogenesis of ADSCs in vitro and promising for further development as an alternative for cartilage tissue engineering in vivo.


Sign in / Sign up

Export Citation Format

Share Document