Nanostructured-lipid carriers-Chitosan hydrogel beads carrier system for loading of resveratrol: A new method of topical application

2022 ◽  
pp. 088532822110539
Author(s):  
Bi Wu ◽  
Yang Li ◽  
Yuan Y Li ◽  
Zhi H Shi ◽  
Xiao H Bian ◽  
...  

The aim of this study was to develop nanostructured-lipid carriers (NLC) encapsulated by Chitosan hydrogel beads for the efficient topical carrier. Dynamic light scattering (DLS), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were conducted to study the influence of the encapsulation on the characteristic of resveratrol-loaded NLC, and the results showed that there was no impact on resveratrol-loaded NLC. Chitosan hydrogel beads could significantly improve the physical stability of resveratrol-loaded NLC. In vitro release study revealed that resveratrol-loaded NLC-Chitosan hydrogel beads had a more significant sustained-release effect on resveratrol. In vitro transdermal studies suggested that the skin permeation of resveratrol was promoted by the effect of Chitosan hydrogel beads and increased resveratrol distribution in the skin. In vitro cytotoxicity showed that resveratrol-loaded NLC-Chitosan hydrogel beads did not exert a hazardous effect on L929 cells. Hence, NLC-Chitosan hydrogel beads might be a promising method for topical applications of resveratrol.

2014 ◽  
Vol 88 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Lígia Marquez Andrade ◽  
Carolina de Fátima Reis ◽  
Lorena Maione-Silva ◽  
Jorge Luiz V. Anjos ◽  
Antonio Alonso ◽  
...  

Author(s):  
AHMED GARDOUH ◽  
Samar H. Faheim ◽  
Samar M. Solyman

Objective: The main purpose of this work was to prepare tolnaftate (TOL) loaded nanostructured lipid carriers (NLCs), Evaluate its characteristics and in vitro release study. Methods: Tolnaftate loaded Nanostructured lipid carriers were prepared by the high shear homogenization method using different liquid lipids types (DERMAROL DCO® and DERMAROL CCT®) and concentrations, different concentration ratios of tween80® to span20® and different homogenization speeds. All the formulated nanoparticles were subjected to particle size (PS), zeta potential (ZP), polydispersity index (PI), drug entrapment efficiency (EE), Differential Scanning Calorimetry (DSC), Transmission Electron microscopy (TEM), release kinetics and in vitro release study was determined. Results: The results revealed that NLC dispersions had spherical shapes with an average size between 154.966±1.85 nm and 1078.4±103.02 nm. High entrapment efficiency was obtained with negatively charged zeta potential with PDI value ranging from 0.291±0.02 to 0.985±0.02. The release profiles of all formulations were characterized by a sustained release behavior over 24 h and the release rates increased as the amount of surfactant decreased. The release rate of TOL is expressed following the theoretical model by Higuchi. Conclusion: From this study, It can be concluded that NLCs are a good carrier for tolnaftate delivery


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 917 ◽  
Author(s):  
Taieb Aouak ◽  
Wassem Sharaf Saeed ◽  
Nawaf M. Al-Hafi ◽  
Abdel-Basit Al-Odayni ◽  
Abdulaziz Ali Alghamdi ◽  
...  

2-hydroxyethyl methacrylate, methylmethacrylate, ethylene glycol dimethyl methacrylate, and lignocaine (drug) were mixed together and the monomers were copolymerized at 60 °C through a free radical polymerization in the presence of α,α′-Azoisobutyronitrile in tetrahydrofuran. A series of copolymer/drug composites with different monoacrylate monomer compositions were prepared by solvent evaporation and characterized by different methods such as nuclear magnetic resonance, differential scanning calorimetry, Fourier transform infrared, X-ray diffraction, and mechanical and optical testing. The water content in the copolymers and the cell viability test on the samples were also examined in this investigation. The results of the analyses of the properties of this drug-carrier system are promising, indicating that this material may be a potential candidate for contact lens applications. The release dynamic of this medication from the prepared drug-carrier systems was investigated in neutral pH media. The results obtained revealed that the diffusion of lignocaine through the copolymer matrix obeys the Fick model and the dynamic release can be easily controlled by the methyl methacrylate content in the copolymer.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 309
Author(s):  
Wantida Chaiyana ◽  
Songyot Anuchapreeda ◽  
Suvimol Somwongin ◽  
Pachabadee Marsup ◽  
Kuan-Han Lee ◽  
...  

This study aimed to develop nanodelivery systems for enhancing the Ocimum sanctum Linn. extract delivery into the skin. Rosmarinic acid (RA) was used as a marker for the quantitative determination of the extract by high-performance liquid chromatography. Nanostructured lipid carriers (NLC), nanoemulsion, liposome, and niosome, were developed and characterized for internal droplet size, polydispersity index (PDI), and zeta potential using photon correlation spectroscopy. Irritation properties of each formulations were investigated by hen’s egg test on the chorioallantoic membrane. In vitro release, skin permeation, and skin retention are determined. NLC was suggested as the most suitable system since it enhances the dermal delivery of RA with the significant skin retention amount of 27.1 ± 1.8% (p < 0.05). Its internal droplet size, PDI, and zeta potential were 261.0 ± 5.3 nm, 0.216 ± 0.042, and −45.4 ± 2.4 mV, respectively. RA released from NLC with a sustained release pattern with the release amount of 1.29 ± 0.15% after 24 h. NLC induced no irritation and did not permeate through the skin. Therefore, NLC containing O. sanctum extract was an attractive dermal delivery system that was safe and enhanced dermal delivery of RA. It was suggested for further used as topical anti-ageing products.


Author(s):  
Kiran Kemkar ◽  
Sathiyanarayanan L. ◽  
Arulmozhi Sathiyanarayanan ◽  
Kakasaheb Mahadik

Objective: Ginger oleoresin (GO) plays an important role on the attenuation of complications associated to the cancer which is attributed to 6-shogaol (6-SGL). The major challenge in using 6-SGL for therapeutic applications is its poor aqueous solubility, low stability in GI and low bioavailability. Considering the potent anticancer nature of 6-SGL and its synergistic activity with other constituents in GO, there is a need to develop a suitable drug delivery system.Methods: Thus in the present study, 6-SGL rich GO (6-SRGO) was incorporated into mixed micelles using phospholipid (Soya Lecithin) as a carrier. The prepared 6-SRGO loaded mixed micelles (6-SRGO-LMM) were characterized physically and chemically using Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and further evaluated for stability study, in vitro release study, in vitro cytotoxicity study and in vivo anticancer activity in comparison with 6-SRGO.Results: The composition such as, drug content (86.27±1.56), encapsulation efficiency (81.55±1.05) and particle size (356.11±4.07) were optimized using 32 factorial design. FTIR and DSC study confirm that the 6-SGL from 6-SRGO was entrapped in the core of phospholipid by self-assembly method to form mixed micelles. The 6-SRGO-LMM exhibited significant in vitro (GI50-23.2 μg/ml) and in vivo anticancer activity in comparison with 6-SRGO.Conclusion: We have developed and investigated mixed micelles composed of phospholipids (soya lecithin S80) and SCH as an effective nanocarrier for the delivery of a natural lipophilic anticancer bioactive 6-SGL from 6-SRGO.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2822 ◽  
Author(s):  
Li Pan ◽  
Hongyan Wang ◽  
Keren Gu

Astaxanthin was encapsulated in nanoliposomes by a film dispersion-ultrasonic technique using soybean phosphatidyl choline. The astaxanthin-loaded nanoliposomes displayed advantages in the aspects of high encapsulation efficiency and less particle size with a remarkably homodisperse size distribution. Based on X-ray diffraction and differential scanning calorimetry the analysis, it has been demonstrated that there could be interactions of astaxanthin with the lipid bilayer, resulting in the forming of astaxanthin-loaded nanoliposomes. The thermal gravimetric analysis revealed that the thermal stability of astaxanthin after encapsulation in nanoliposomes was remarkably enhanced as compared to astaxanthin alone. Furthermore, encapsulation could greatly enhance the water dispersibility of astaxanthin. This study also confirmed that encapsulation of astaxanthin in nanoliposomes could be an effective way to supply astaxanthin continuously in the body. The effects of astaxanthin incorporation on structural changes of the liposomal membrane were investigated through steady-state fluorescence measurements. This study revealed that the incorporation of astaxanthin into the lipid bilayer decreased membrane fluidity, but increased micropolarity in the membrane within a certain range of astaxanthin concentrations. Additionally, it indicated that the encapsulation of astaxanthin in the lipid bilayer could be applied to modulate the structural properties of membranes.


Author(s):  
J P Raval ◽  
D R Naik

Designing and evaluating a multiparticulate controlled release dosage form, to increase the efficacy of acyclovir (a selective antiherpes agent). Spray drying technique for microsphere production is compared with novel solvent evaporation-matrix erosion technique for variable drug loading in different concentration of ethyl cellulose. The microspheres were characterized for physicochemical properties. The microspheres sizes were ranged from 7-25 μm. The spray dried microspheres had better encapsulation efficiency (up to 91%) compared to that of novel solvent evaporation-matrix erosion technique microspheres. Scanning electron microscopy confirmed spherical geometry due to high cross-linking density. Differential scanning calorimetry, Fourier-transform infrared spectroscopy and x-ray diffraction studies showed chemical stability and intactness of entrapped drug in the microspheres. In vitro release of acyclovir from spray dried microspheres continued for longer period compared to novel solvent evaporation-matrix erosion method. Overall, the release studies depended on the concentration of ethyl cellulose, extent of drug loading, and the technique used to prepare microspheres. Thus, marked retardation of drug release may provide a useful effective anti-retroviral drug therapy.  


2018 ◽  
Vol 8 (7) ◽  
pp. 1163 ◽  
Author(s):  
Vieri Piazzini ◽  
Beatrice Lemmi ◽  
Mario D’Ambrosio ◽  
Lorenzo Cinci ◽  
Cristina Luceri ◽  
...  

Background: Silymarin is the extract from seeds of Silybum marianum L. Gaertn. and it has been used for decades as hepatoprotectant. Recently, it has been proposed to be beneficial in type 2 diabetes patients. However, silymarin is a poorly water soluble drug with limited oral bioavailability. In this study, nanostructured lipid carriers were proposed to enhance its solubility and intestinal absorption. Methods: Nanostructured lipid carriers were made of Stearic acid:Capryol 90 as lipid mixtures and Brij S20 as surfactant. Formulations were physically and chemically characterized. Stability and in vitro release studies were also assessed. In vitro permeability and Caco-2 cellular uptake mechanism were investigated. Results: Obtained results were based on size, homogeneity, ζ-potential and EE%. Nanostructured lipid carriers could be orally administered. No degradation phenomena were observed in simulated gastrointestinal fluids. Storage stability of suspensions and lyophilized products was also tested. Glucose was selected as best cryoprotectant agent. About 60% of silymarin was released in 24 h in phosphate buffered saline. In vitro parallel artificial membrane permeability assay experiments revealed that the nanocarrier enhanced the permeation of Silymarin. Caco-2 study performed with fluorescent nanoparticles revealed the ability of carrier to enhance the permeation of a lipophilic probe. Cellular uptake studies indicated that active process is involved in the internalization of the formulation. Conclusions: The optimized nanostructured lipid carriers showed excellent chemical and physical stability and enhanced the absorption of silymarin.


2019 ◽  
Vol 10 (4) ◽  
pp. 2612-2621 ◽  
Author(s):  
Souvik chakraborty ◽  
Gowda D V ◽  
Vishal Gupta N

In this present research work, the development of biodegradable scaffolds loaded with Vancomycin micropartricles was carried out for the treatment of Osteomyelitis. Characterization Vancomycin Loaded microparticles and evaluation of the microparticles loaded scaffolds and also to carry out In-vitro release studies. Vancomycin hydrochloride microparticles were prepared with the help of double emulsion method. HPMC and Polaxomer 407 has been taken as the main polymers for the preparation of the microparticles. Chitosan was taken as the major polymer for the preparation of scaffolds for its greater biocompatibility and biodegradability. The preparation was done with the help of the solvent casting method. The formulation was taken for further characterization and evaluation studies. Fourier-Transform Infrared Spectroscopy and Differential scanning calorimetry were carried out for the pure vancomycin drug, and the chitosan polymer X-ray diffraction was carried out to check the crystallinity of the prepared scaffolds. The particle size, zeta potential and polydispersity index for vancomycin loaded microparticles were found to be 577.0±102.5 nm, 1624 mv and 0.254. The maximum and sustained release rate of the drug was found to be 95.6±0.478, at 16th Hr. By taking all the reports, a conclusion can be drawn that, the formulated VLM biodegradable scaffolds will show burst release at the initial time of administration, which is essential for the wound healing activity and will be sustained throughout the process of treatment of osteomyelitis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Arvind Sharma ◽  
Sandeep Arora

Dermal drug delivery system that is required to localizes methotrexate (MTX) in the synovial joint is needed to treat inflammation in rheumatoid arthritis (RA). The present investigation aims at exploring the potential of fatty acid vesicles for the topical delivery of methotrexate. Vesicles were prepared by film hydration method using oleic acid as a fatty acid principal component. Developed vesicles were characterized for size, size distribution, shape, in vitro release, pH dependent, and storage stability. Interaction between MTX and oleic acid was investigated using differential scanning calorimetry. The MTX amount permeated through rat skin was three- to fourfold higher using oleic acid compared to those from plain drug solution or carbopol gel. At the end of the skin permeation assay using ufasomes, up to 50% of the administered dose was found in the skin. These results suggest that methotrexate encapsulated in oleic acid vesicles may be of value for the topical administration of MTX in the treatment of psoriasis.


Sign in / Sign up

Export Citation Format

Share Document