Detection Experiments of High-Barrier and High-Temperature Sterilization and Easy Tear Flexible Plastic Packaging Materials Applied in Food Packaging

2011 ◽  
Vol 117-119 ◽  
pp. 1137-1141
Author(s):  
Ling Yu Wang ◽  
Jun Yan Huang ◽  
Li Hua Cui

In order to study the characteristics of a new kind of high-barrier and high-temperature sterilization and easy tear flexible plastic packaging materials applied in food packaging, the PET/AL/CPP was chosen as flexible plastic packaging material structure, different PET, CPP, alcohol inks, adhesives and other raw materials were selected for making a series of processing technology experiment and detection analysis. Then comparing the data obtained with the requirements, it was concluded that new flexible plastic packaging materials were extremely high resistance oxygen and resistance wet, high-temperature sterilization and good one-way easy tear, and etc.

2021 ◽  
Vol 67 (3) ◽  
pp. 3575-3583
Author(s):  
Edina Lendvai

Packaging technology is one of today’s rapidly evolving disciplines, with innovative implications for many other disciplines, such as the food industry. Plastics can also be referred to as the materials of the 21st century, without which we could hardly imagine our lives today. Bioplastics are made from raw materials from renewable sources, while degradable plastics are mixtures of plastics made from conventional raw materials and additives that aid degradation. In my qualitative, online study, 513 people answered my questions about what the main function of packaging is, what characteristics a packaging material should possess, foods in which packaging are preferred, whether they had ever encountered environmentally friendly packaging materials. In addition to a lot of useful information, it turned out that Hungarian people are typically eco-conscious on paper, but in reality they do not pay enough attention to it. It is primarily college graduate women between the ages of 46 and 65 who also take environmental and ecological considerations into account when buying food.


Author(s):  
S. Chaitanya Kumari ◽  
P. Naga Padma ◽  
K. Anuradha

The demand for increasing the shelf life of fresh food as well as the need for protecting the food against foodborne infections warrant the demand for increasing the shelf life of fresh food. The incorporation of nanoparticles into the packaging material can enhance the preservation of perishable foods. Silver nanoparticles (AgNPs), in particular, have antibacterial, anti-mold, anti-yeast, and anti-viral activities can be embedded into the biodegradable packaging materials for this purpose. This study focuses on antimicrobial packaging materials for food by mixing the extracts of different plants with silver nitrate and depositing this mixture as a layer on the blotting papers, which are thick sheets of paper made of cellulose. Because the blotting papers are highly absorbent and porous, silver nitrate solution along with the plant extracts can be easily applied and allowed for in situ synthesis of AgNPs. Subsequently, these papers were analyzed and characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and energy dispersive X-ray analysis. The coated paper exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the coated paper when used as a packaging material for tomatoes and coriander leaf, the shelf life was extended to about 30 days and 15 days respectively. The prepared cost-effective silver packing material can be used in food packaging for various perishable foods.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2245
Author(s):  
Niaz Mahmud ◽  
Joinul Islam ◽  
Reza Tahergorabi

Marine sources are gaining popularity and attention as novel materials for manufacturing biopolymers such as proteins and polysaccharides. Due to their biocompatibility, biodegradability, and non-toxicity features, these biopolymers have been claimed to be beneficial in the development of food packaging materials. Several studies have thoroughly researched the extraction, isolation, and latent use of marine biopolymers in the fabrication of environmentally acceptable packaging. Thus, a review was designed to provide an overview of (a) the chemical composition, unique properties, and extraction methods of marine biopolymers; (b) the application of marine biopolymers in film and coating development for improved shelf-life of packaged foods; (c) production flaws and proposed solutions for better isolation of marine biopolymers; (d) methods of preparation of edible films and coatings from marine biopolymers; and (e) safety aspects. According to our review, these biopolymers would make a significant component of a biodegradable food packaging system, reducing the amount of plastic packaging used and resulting in considerable environmental and economic benefits.


2018 ◽  
Vol 19 (12) ◽  
pp. 936-940
Author(s):  
Irena Nowotyńska ◽  
Gabriela Grabowska ◽  
Małgorzata Zdeb

The article presents comparative analyses of selected plastic packaging (PE-HD, PET) taking into account the technical, promotional and ecological aspects. The technical aspect of the package has been examined by marking the properties of the packaging material during static stretching and by determining the material's resistance to high temperature in the shrink test. The determination of the aspect of the promotional and ecological value of the packaging was made by developing special evaluation cards. Finally, a comparative analysis of selected packages was carried out based on a comprehensive quality assessment, constituting the sum of partial grades together with the relevant coefficients


Author(s):  
Tamara B. Chistyakova ◽  
◽  
Alexander S. Razygraev ◽  
Christian Kohlert ◽  
◽  
...  

A computer system was described for comparison of life cycle characteristics of packaging materials. The system allows, at given requirements for packaging materials, to evaluate the complex of properties of packaging materials, to calculate specific and generalized criteria for evaluating packaging materials and to provide the user with the opportunity to choose the most suitable packaging material based on the results. The developed system includes a library of customizable criteria, a database of rules for selecting packages, databases of life cycle stages, packages, packaging materials, and characteristics of packaging materials. The system was tested on the example of comparative analysis of the process of production of raw materials for packages and manufacturing packages, which may include fresh raw materials and recycled resources. Testing results confirmed the computer system operability and possibility of using it for a comprehensive assessment of the life cycle of the production of packaging materials taking into account environmental safety, consumer and economic characteristics.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fangyi Li ◽  
Kaikai Guan ◽  
Peng Liu ◽  
Gang Li ◽  
Jianfeng Li

In order to reduce the white pollution caused by nondegradable waste plastic packaging materials, the biomass cushion packaging material with straw fiber and starch as the main raw materials had been synthesized. The orthogonal experiment was used to study the impact of mass ratio of fiber to starch, content of plasticizer, active agent, and foaming agent on the compressive strength of cushion material. Infrared spectrometer and theory of water’s bridge-connection were used to study the hydroxyl groups among the fiber and starch. The results were demonstrated as follows: the mass ratio of fiber to starch had the most significant impact on compressive strength. When the contents of the plasticizer, the foaming agent, and the active agent were, respectively, 12%, 0.1%, and 0.3% and the mass ratio of fiber to starch was 2 : 5, the compressive strength was the best up to 0.94 MPa. Meanwhile, with the plasticizer content and the mass ratio of fiber to starch increasing, the cushioning coefficient of the material decreased first and then increased. Comparing the cushion and rebound performance of this material with others, the biomass cushion packaging material could be an ideal substitute of plastic packaging materials such as EPS and EPE.


2015 ◽  
Vol 30 (2) ◽  
pp. 143-173 ◽  
Author(s):  
Seyed Ahmad Attaran ◽  
Azman Hassan ◽  
Mat Uzir Wahit

Concerns about environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer demand for high-quality food products have led to increased interest in the development of biodegradable packaging materials using annually renewable natural biopolymers. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low barrier properties can be recovered by applying nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to large nanoparticle surface area and their significant aspect ratios. Additionally, natural biopolymer is susceptible to microorganisms, resulting in good biodegradability, which is one of the most promising aspects of its incorporation in packaging materials and industries. The present review article explains the various categories of nanoclay and bio-based polymer-based composites with particular regard to their application as packaging materials. It also gives an overview of the most recent advances and emerging new aspects of nanotechnology for development of composites for environmentally compatible food packaging materials.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
V. Osyka ◽  
N. Merezhko ◽  
L. Koptjukh ◽  
V. Komakha ◽  
S. Kniaz

The paper presents the research results on the properties of the pulp coniferous and deciduous wood composition in its original state and paper made from it, proposes a mechanism to increase the waterfast and waterproof food packaging paper by surface treatment with a composition based on polyamidepichlorohydrin with polyvinyl alcohol and urea.  The study was conducted in order to ensure an increase in the consumer properties of packaging paper, since when packaging materials encounter food products, their structure can change under the influence of moisture, steam, and gas. Polyamidaminepichlorohydrin was used as the main component of the composition for paper processing, as functional additives: polyvinyl alcohol and urea. The above-mentioned starting materials are environmentally friendly, since foreign inclusions in food packaging materials would pose a serious danger to human health and life, as well as to the brand image of the product in which they would be detected. It was proved that high waterfastness and waterproofness, as well as the necessary level of barrier, protective and operational properties of packaging material for food products cannot always be obtained by introducing a significant amount of polyamidaminepichlorohydrin, so the paper investigated the mechanism of interacting cellulose fibers of paper with polyamidaminepichlorohydrin, and also proved the possibility of its use to obtain packaging paper with a given set of properties. It was found that the consumption of up to 4–6% polyamidaminepichlorohydrin provides the main increase in the mechanical strength of packaging paper, both in wet and dry conditions. The resulting waterfast and waterproof material can be used for food packaging.


2019 ◽  
Vol 84 (4) ◽  
pp. 59-62
Author(s):  
L.V. Hortseva ◽  
T.V. Shutova ◽  
O.S. Martynova ◽  
V.V. Zaval'na ◽  
T.P. Kostiuchenko

The article provides different types of modern food packaging materials, their advantages and possible risks during use. Issues of safe use and necessity for packaging material control have been also reviewed. Studies of some packaging products under the parameters of human health safety were described.


Author(s):  
Sudip Ray ◽  
Siew Young Quek ◽  
Allan Easteal ◽  
Xiao Dong Chen

With today's advancement in nanotechnology, Polymer-Clay Nanocomposite has emerged as a novel food packaging material due to its several benefits such as enhanced mechanical, thermal and barrier properties. This article discusses the potential use of these polymer composites as novel food packaging materials with emphasis on preparation, characterization, properties, recent developments and future prospects.


Sign in / Sign up

Export Citation Format

Share Document