Preparation of polyoxymethylene/methyl vinyl silicone rubber/thermoplastic polyurethane ternary thermoplastics vulcanizates with good toughness properties

2021 ◽  
pp. 089270572110571
Author(s):  
Wei Fang ◽  
Xiaodong Fan ◽  
Ruilong Li

Novel thermoplastic vulcanizates (TPVs) based on polyoxymethylene (POM) and methyl vinyl silicone rubber (MVQ) have been prepared by dynamic vulcanization process through a batch mixer. During the preparation of TPV blends, Di-(tert butyl peroxyisopropyl) benzene (BIBP) was used as the curing agent in order to make MVQ cross-linked and TPU was used to coat MVQ for improving the compatibility of MVQ and POM. In order to understand the influence of different compositions on TPV blends, five groups of experimental processes were described in detail. During these experiments, the amount of POM was reduced from 70phr to 30phr, that of MVQ was gradually increased from 18phr to 42 phr, and TPU was increased from 12phr to 28phr. In addition, the morphology and properties of TPVs were studied by DSC, FTIR, SEM, DMA and mechanical tests. The mechanical testing results showed that with the amount of POM decreasing and the total amount of MVQ and TPU increasing, the tensile strength of the TPV blends gradually was decreased, and the elongation at break was increased accordingly from 35.2 ± 6% of pure POM to 142.8 ± 11% of sample 5#.

2009 ◽  
Vol 82 (5) ◽  
pp. 492-505 ◽  
Author(s):  
C. F. Antunes ◽  
A. V. Machado ◽  
M. van Duin

Abstract Physical blends and thermoplastic vulcanizates (TPVs) based on EPDM and PP were prepared in a batch mixer. Dynamic vulcanization of TPVs using resol/SnCl2 was studied as a function of time. Static and dynamic vulcanization of EPDM in the absence of PP were also studied. Crosslinking of EPDM in the absence of PP is more efficient via static than dynamic vulcanization. For EPDM/PP-based TPVs the extent of crosslinking reaction versus time decreases as the amount of EPDM increases. Degradation of the EPDM network occurs during dynamic vulcanization, due to the combined action of shearing and high temperature, and increases as EPDM becomes more and more the continuous phase.


Author(s):  
Qi Tang ◽  
Lan Cao ◽  
Xiurui Lang ◽  
Yingxia Zong ◽  
Chengzhong Zong

In order to obtain higher thermoelectric and mechanical properties in non-polar thermoplastic vulcanizates (TPVs), the Butyl rubber/Polypropylene (TPVs)/hydroxylated graphene (HGE) composites with nanosheet network were prepared through masterbatch technique and based on thermodynamic calculations, using polypropylene-graft-maleic anhydride (PP-MA) as a compatibilizer. The FTIR and Raman spectra revealed the introduced maleic anhydride group on PP-MA can form strong interfacial interaction with hydroxyl-containing functional groups on HGE. Morphology study indicated the rubber particles in the composites occupied the most volume of the PP phase, as expected to hinder the aggregation of HGE and form the effective nanosheet network. The nanosheet network can be combined with the IIR cross-linked particles during the dynamic vulcanization process to improve the interface bonding between PP and IIR, thus increasing the tensile strength of TPVs. When the content of HGE reached the percolation threshold (2 wt.%), the nanosheet network of HGE was formed, and the AC conductivity, dielectric permittivity and thermal conductivity increased sharply. The prepared TPVs/HGE nanocomposites have significantly improved in mechanical properties, thermal properties and dielectric properties, which provides a guarantee for their potential application as multifunctional TPVs polymers.


2013 ◽  
Vol 844 ◽  
pp. 140-143
Author(s):  
Wiphawadee Pongdong ◽  
Charoen Nakason ◽  
Claudia Kummerlöwe ◽  
Norbert Vennemann

Thermoplastic vulcanizates (TPVs) based on thermoplastic polyurethane (TPU) and epoxidized natural rubber (ENR) were prepared by dynamic vulcanization. In this study, the influence of different types and loading levels of filler on the properties of ENR-25/TPU blends was investigated. Furthermore, a filler from renewable resources, namely Rice Husk Ash (RHA), and conventional silica were incorporated in the blends (i.e., premixed with ENR-25). Then, various loading levels of filler were investigated at 10, 20 and 30 phr and compared with the unfilled blend. It was found that the incorporation of filler into the blend shows higher complex viscosity, mechanical properties in terms of Youngs modulus, tensile strength and hardness compared with the TPV without filler. The incorporation of ENR-25 into the blend shows lower hardness than pure TPU. It was also found that TPV filled with RHA revealed almost identical values for Youngs modulus, tensile strength, elongation at break and hardness, than the same TPV filled with conventional silica. This indicates rice husk ash has great potential to be used as filler in polymer composites based on ENR/TPU blends.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Qi Tang ◽  
Lan Cao ◽  
Xiurui Lang ◽  
Yingxia Zong ◽  
Chengzhong Zong

Abstract In order to obtain higher thermoelectric and mechanical properties in nonpolar thermoplastic vulcanizates (TPVs), the butyl rubber/polypropylene (TPVs)/hydroxylated graphene (HGE) composites with nanosheet network were prepared through masterbatch technique and based on thermodynamic calculations, using polypropylene-graft-maleic anhydride (PP-MA) as a compatibilizer. The Fourier transform infrared (FTIR) and Raman spectra revealed the introduced maleic anhydride group on PP-MA can form strong interfacial interaction with hydroxyl-containing functional groups on HGE. Morphology study indicated the rubber particles in the composites occupied the most volume of the PP phase, as expected to hinder the aggregation of HGE and form the effective nanosheet network. The nanosheet network can be combined with the butyl rubber (IIR) cross-linked particles during the dynamic vulcanization process to improve the interface bonding between PP and IIR, thus increasing the tensile strength of TPVs. The prepared TPVs/HGE composites have significantly improved in mechanical properties, thermal properties and dielectric properties, which provides a guarantee for their potential application as multifunctional TPVs polymers.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Young-Doo Kwon ◽  
Seong-Hwa Jun ◽  
Ji-Min Song

Most machines and instruments constantly require elastomeric materials like rubber for the purposes of shock absorption, noise attenuation, and sealing. The material properties and accurate lifetime prediction of rubber are closely related to the quality of machines, especially their durability and reliability. The properties of rubber-like elastomers are influenced by ambient conditions, such as temperature, environment, and mechanical load. Moreover, the initial properties of rubber gaskets must be sustained under working conditions to satisfy their required function. Because of its technical merits, as well as its low cost, the highly accelerated life test (HALT) is used by many researchers to predict the long-term lifetime of rubber materials. Methyl vinyl silicone rubber (VMQ) has recently been adopted to improve the lifetime of automobile radiator gaskets. A four-parameter method of determining the recovery ability of the gaskets was recently published, and two revised methods of obtaining the recovery were proposed for polyacrylate (ACM) rubber. The recovery rate curves for VMQ were acquired using the successive zooming genetic algorithm (SZGA). The gasket lifetime for the target recovery (60%) of a compressed gasket was computed somewhat differently depending on the selected regression model.


RSC Advances ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 2065-2071 ◽  
Author(s):  
Lun Jin ◽  
Xiaomin Zhao ◽  
Jianfeng Xu ◽  
Yanyu Luo ◽  
Danqing Chen ◽  
...  

In this work, methyl vinyl silicone rubber (VMQ) nanocomposites were prepared by solution blending VMQ, graphene nanoplate/Fe3O4@BaTiO3 hybrid (GFBT) and MWCNTs, aiming to improve the electromagnetic interference (EMI) shielding performance of VMQ.


2020 ◽  
Vol 842 ◽  
pp. 16-21
Author(s):  
Wei Ying Gao

In our previous work, ammonium polyphosphate (APP) microcapsule with the shell of boron modified phenolic resin (BPF) was prepared, recorded as BPFAPP. However, the compatibility and the flame retardancy of BPFAPP in thermoplastic polyurethane elastomer (TPU) are still not very good due to the brittle and hard shell wall. To improve the brittleness of microcapsules shell and the property reinforcements of APP in TPU, APP was encapsulated with the tung oil and boron modified phenolic resin (TBPF) in this paper, recorded as TBPFAPP. The property reinforcements of TBPFAPP in TPU were studied. The thermogravimetry, limiting oxygen index and cone calorimetry analysis showed that TPU/TBPFAPP composite had higher char yield and better flame resistance. The tensile strength and elongation at break showed that the mechanical properties were also significantly improved due to the introduction of α-Eleostearate.


2019 ◽  
Vol 947 ◽  
pp. 77-81
Author(s):  
Natsuda Palawat ◽  
Phasawat Chaiwutthinan ◽  
Sarintorn Limpanart ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

The aim of this study is to improve the physical properties of poly(lactic acid) (PLA) by incorporating thermoplastic polyurethane (TPU), organo-montmorillonite (OMMT) and/or nanosilica (nSiO2). PLA was first melt mixed with five loadings of TPU (10–50 wt%) on a twin-screw extruder, followed by injection molding. The addition of TPU was found to increase the impact strength, elongation at break and thermal stability of the blends, but decrease the tensile strength and Young’s modulus. Based on a better combination of the mechanical properties, the 70/30 (w/w) PLA/TPU blend was selected for preparing both single and hybrid nanocomposites with a fix total nanofiller content of 5 parts per hundred of resin (phr), and the OMMT/nSiO2 weight ratios were 5/0, 2/3, 3/2 and 0/5 (phr/phr). The Young’s modulus and thermal stability of the nanocomposites were all higher than those of the neat 70/30 PLA/TPU blend, but at the expense of reducing the tensile strength, elongation at break and impact strength. However, all the nanocomposites exhibited higher impact strength and Young’s modulus than the neat PLA. Among the four nanocomposites, a single-filler nanocomposite containing 5 phr nSiO2 exhibited the highest impact strength and thermal stability, indicating that there was no synergistic effect of the two nanofillers on the investigated physical properties. However, the hybrid nanocomposite containing 2/3 (phr/phr) OMMT/nSiO2 possessed a compromise in the tensile properties.


Sign in / Sign up

Export Citation Format

Share Document