The Role of Extracellular Matrix in the Morphogenesis and Differentiation of Salivary Glands

1990 ◽  
Vol 4 (1) ◽  
pp. 27-33 ◽  
Author(s):  
L.S. Cutler

The processes of morphogenesis and cytodifferentiation are partially linked, independently regulated processes. The full expression of both processes is modulated or controlled, at least in part, by components of the extracellular matrix. This paper reviews the body of work that demonstrates a role for epithelial-mesenchymal interactions and various extracellular matrix molecules in the induction, control, and maintenance of salivary gland morphogenesis and cytodifferentiation. In addition, new, preliminary information which further elucidates the role of laminin and type IV collagen in the processes of morphogenesis and cytodifferentiation is presented. With regard to the role of extracellular matrix molecules in the regulation of salivary gland morphogenesis and cytodifferentiation, it appears that types I, III, and IV collagen, laminin, and chondroitin sulfate proteoglycan play roles in the control of glandular morphogenesis. With the exception of type IV collagen, these molecules do not appear to be involved in the regulation of cytodifferentiation of salivary gland secretory cells. On the other hand, of the extracellular matrix molecules tested so far, only type IV collagen appears to play a role in the regulation of salivary gland secretory cell differentiation.

1991 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Leslie S. Cutler ◽  
Waldemiro Gremski

The full expression of both morphogenesis and secretory cell differentiation in salivary glands is modulated or controlled, at least in part, by interactions between the salivary epithelium and the surrounding mesenchyme. Salivary gland morphogenesis and cytodifferentiation are partially linked but independently regulated processes. This presentation reviews the information that establishes the role of various extracellular matrix molecules and direct epithelial-mesenchymal interactions in the induction, control, and maintenance of morphogenesis and secretory cell differentiation in salivary glands.


2020 ◽  
Vol 217 (3) ◽  
Author(s):  
Nikolaos G. Frangogiannis

TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.


1994 ◽  
Vol 266 (6) ◽  
pp. F829-F842 ◽  
Author(s):  
K. Sharma ◽  
F. N. Ziyadeh

Transforming growth factor-beta (TGF-beta) is a prototypical multifunctional cytokine, with growth being only one of its many functions. Its receptors and actions are germane to almost every cell in the body involved in tissue injury and repair, and its effects are best understood in the context of a cellular response to a changing environment. The broad areas in which TGF-beta plays a crucial role include cell proliferation and extracellular matrix production. TGF-beta is a key regulatory molecule in the control of the activity of fibroblasts and has been implicated in several disease states characterized by excessive fibrosis. In the kidney, TGF-beta promotes tubuloepithelial cell hypertrophy and regulates the glomerular production of almost every known molecule of the extracellular matrix, including collagens, fibronectin, tenascin, and proteoglycans, as well as the integrins that are the receptors for these molecules. Furthermore, TGF-beta blocks the destruction of newly synthesized extracellular matrix by upregulating the synthesis of protease inhibitors and downregulating the synthesis of matrix-degrading proteases such as stromelysin and collagenase. As will be discussed, there is a strong body of in vitro and in vivo evidence suggesting that persistent overproduction of TGF-beta 1 in glomeruli after the acute inflammatory stage of glomerulonephritis causes glomerulosclerosis. TGF-beta may also be important in a variety of other chronic renal disorders characterized by hypertrophy and sclerosis, such as diabetic nephropathy. In this review we will attempt to offer a basic understanding of the cellular and molecular biology of TGF-beta and its receptors, with special focus on the role of the TGF-beta system in the kidney during development, growth, and disease.


2008 ◽  
Vol 295 (6) ◽  
pp. C1633-C1646 ◽  
Author(s):  
Gary E. Striker ◽  
Francoiçe Praddaude ◽  
Oscar Alcazar ◽  
Scott W. Cousins ◽  
Maria E. Marin-Castaño

The early stage of age-related macular degeneration (AMD) is characterized by the formation of subretinal pigment epithelium (RPE) deposits as a result of the dysregulation in the turnover of extracellular matrix (ECM) molecules. However, the mechanism involved remains unclear. Hypertension (HTN) is an important risk factor for AMD, and angiotensin II (ANG II) is the most important hormone associated with HTN. However, the relevance of ANG II receptors and ANG II effects on RPE have not been investigated yet. Therefore, the expression and regulation of ANG II receptors as well as the ECM turnover were studied in human RPE. ANG II receptors were expressed and upregulated by ANG II in human RPE. This regulation resulted in functional receptor expression, since an increase in intracellular concentration of calcium was observed upon ANG II stimulation. ANG II also increased matrix metalloproteinase (MMP)-2 activity and MMP-14 at the mRNA and protein levels as well as type IV collagen degradation. These ANG II effects were abolished in the presence of the ANG II receptor subtype 1 (AT1) receptor antagonist candesartan. In contrast, ANG II decreased type IV collagen via both AT1 and AT2 receptors, suggesting a synergistic effect of the two receptor subtypes. In conclusion, we have confirmed the presence of ANG II receptors in human RPE and their regulation by ANG II as well as the regulation of ECM molecules via ANG II receptors. Our data support the hypothesis that ANG II may exert biological function in RPE through ANG II receptors and that ANG II may cause dysregulation of molecules that play a major role in the turnover of ECM in RPE basement membrane and Bruch's membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.


1990 ◽  
Vol 111 (3) ◽  
pp. 1161-1170 ◽  
Author(s):  
R M Nitkin ◽  
T C Rothschild

Agrin, an extracellular matrix-associated protein extracted from synapse-rich tissues, induces the accumulation of acetylcholine receptors (AChRs) and other synaptic components into discrete patches on cultured myotubes. The appearance of agrin-like molecules at neuromuscular junctions suggests that it may direct synaptic organization in vivo. In the present study we examined the role of extracellular matrix components in agrin-induced differentiation. We used immunohistochemical techniques to visualize the spatial and temporal distribution of laminin, a heparan sulfate proteoglycan (HSPG), fibronectin, and type IV collagen on cultured chick myotubes during agrin-induced aggregation of AChRs. Myotubes displayed significant amounts of laminin and HSPG, lesser amounts of type IV collagen, and little, if any, fibronectin. Agrin treatment caused cell surface laminin and HSPG to patch, while collagen and fibronectin distributions were generally unaffected. Many of the agrin-induced laminin and HSPG patches colocalized with AChR patches, raising the possibility of a causal relationship between matrix patching and AChR accumulations. However, patching of AChRs (complete within a few hours) preceded that of laminin or HSPG (not complete until 15-20 h), making it unlikely that matrix accumulations initiate AChR patching at agrin-induced sites. Conversely, when AChR patching was blocked by treatment with anti-AChR antibody mAb 35, agrin was still able to effect patching of laminin and HSPG. Taken together, these findings suggest that agrin-induced accumulations of AChR and laminin/HSPG are not mechanistically linked.


Placenta ◽  
1993 ◽  
Vol 14 ◽  
pp. 201-210
Author(s):  
Hervé Emonard ◽  
Maryam Aghayan ◽  
Monique Smet ◽  
Jean-Pierre Schaaps ◽  
Jean-Alexis Grimaud ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 29-29
Author(s):  
Veronica H. Flood ◽  
Abraham C. Schlauderaff ◽  
Paula M. Jacobi ◽  
Tricia L. Slobodianuk ◽  
Robert R. Montgomery ◽  
...  

Abstract Von Willebrand factor (VWF) plays a key role in coagulation by tethering platelets to injured subendothelium via binding sites for platelet glycoprotein Ib and collagen. The binding sites for types I and III collagen in the VWF A3 domain are well characterized, and defects in this region have been implicated in von Willebrand disease (VWD). Additional collagens present in the vasculature may also be involved in interactions with VWF. A VWF A1 sequence variation, p.R1399H, has been associated with decreased binding to type VI collagen, but the clinical significance of this observation remains unclear. Type IV collagen is a common component of the basement membrane and as such may be an important ligand for VWF. While some VWD testing utilizes types I or III collagen, current clinical testing does not include collagen IV or VI. To characterize the role of the VWF A1 domain in VWF-type IV collagen interactions, we generated several A1 domain variant human and/or murine recombinant VWF (rVWF) constructs including R1399H and several type 2M VWD variants localized to the same region (S1387I, Q1402P, and an 11 amino acid deletion mutant encompassing amino acids 1392-1402). These constructs were then expressed in HEK 293T cells. To further assess the role of the A1 domain, scanning alanine mutagenesis (SAM) of residues 1387 through 1412 was conducted. VWF antigen levels (VWF:Ag), collagen binding with type III (VWF:CB3), IV (VWF:CB4), or VI (VWF:CB6) collagen were determined, and multimer distribution was assessed for all recombinant VWF variants. The role of R1399H in the context of human rVWF was characterized initially. Although VWF:Ag, VWF:CB3, and multimer distribution were normal for R1399H compared to wild-type (WT VWF), VWF:CB4 was undetectable. To examine this effect in a mouse model, the R1399H variant was expressed in the context of murine rVWF and collagen binding was determined. Similar to the human variant, murine R1399H rVWF demonstrated significantly reduced binding to murine type IV collagen, at only 7% of the binding seen with WT murine rVWF. In order to examine the behavior of R1399H under shear conditions, either WT or R1399H murine rVWF DNA was hydrodynamically injected into the tail veins of VWF -/- mice to induce expression of the proteins; blood was drawn from the vena cava 24 hours later and then examined on the VenaFlux flow apparatus. VWF expression levels and multimer distribution were similar for the R1399H- and WT-injected mice. Under static conditions, the murine plasma-derived R1399H demonstrated decreased VWF:CB4, at only 16% of the levels seen with WT VWF. No defect was seen in VWF:CB3. Furthermore, when binding to type IV collagen was assessed under flow conditions by VenaFlux, platelet adhesion was significantly decreased in mice expressing R1399H VWF as compared to mice expressing WT VWF. When examining other A1 domain variants, Q1402P and del1392-1402 demonstrated absent VWF:CB4 while S1387I demonstrated a significant reduction in VWF:CB4 compared to WT VWF. All SAM VWF A1 domain variants demonstrated normal expression, multimerization, and VWF:CB3. However, type IV collagen binding was absent for R1392A, R1395A, R1399A, and K1406A and was reduced to less than 50% of WT VWF for Q1402A, K1405A, and K1407A. These residues map to an outside face of the VWF A1 domain crystal structure, and are likely the critical residues for VWF binding to type IV collagen. Taken together, these data demonstrate that the type IV collagen binding site localizes to a specific region of the VWF A1 domain. Mutations in this region of VWF may be clinically significant due to a defect in the ability of VWF to attract platelets to exposed type IV collagen which may contribute to bleeding symptoms seen in VWD. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document