Imparting high flame retardancy to epoxy resin with ultra-low loading of 5,10-dihydro-phenophosphazine-10-oxide functioned triazine

2017 ◽  
Vol 30 (6) ◽  
pp. 742-751
Author(s):  
Xiaoli Wu ◽  
Chunlei Dong ◽  
Alvianto Wirasaputra ◽  
Haohao Huang ◽  
Shumei Liu ◽  
...  

High mechanical properties and flame retardancy of epoxy are important for its applications. A novel star-shaped flame-retardant 5,10-dihydro-phenohphosphazine-10-oxide functioned triazine (TRIDPPA) with high efficiency is synthesized, and its structure is characterized. TRIDPPA is used as the co-curing agent for diglycidyl ether of the bisphenol A/4,4-diaminodiphenyl methane system. The introduction of TRIDPPA greatly improves the flame retardancy of the cured epoxy resins. The epoxy resin (ER)/TRIDDPA1.0 resin acquires a limiting oxygen index value of 30.7% and UL-94 V-0 rating when the mass fraction of TRIDDPA is 1.0 wt% with only 0.086 wt% of phosphorus content. The cross-link density of ER/TRIDDPA1.0 is increased, and the glass transition temperature is improved by 5°C. Besides, tensile strength and toughness of ER/TRIDDPA1.0 are also enhanced.

2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


2020 ◽  
Vol 842 ◽  
pp. 314-325
Author(s):  
Bin Lin

Epoxy resin (EP) mortar usually used to repair the cracking of concrete structure under damp environment, but EP is extremely flammable, thus it’s extremely imperative to design a novel multifunction EP grouting materials with flame retardancy and waterproofness for the practical application. Targeting ingenious decoration of EP grouting materials, multiple flame retardant elements (phosphorus, nitrogen and fluorine) are concurrently introduced into a fire retardant and the fire retardant defined as DDM-FNP. The obtained DDM-FNP/EP grouting composite possess high thermal stability, flame retardancy and hydrophobicity. The limiting oxygen index (LOI) value of DDM-FNP/EP composites has a significant improve, which is increased from 26.7 (EP-0) to 35.8 (EP-4). Composites with more than 10 wt% of DDM-FNP could pass UL-94 V-0 rating without dripping. Compared with EP-0, the PHRR and THR of EP-4 are decreased by 31.1% and 21.6%, respectively. In addition, due to the introduction of the F element, the water contact angle of EP composites is changed from 75.2° (hydrophilicity) to 98.6° (hydrophobicity) after the introduction of a certain amount of DDM-FNP flame retardant. Therefore, this work provide a new perspective to design a multifunction EP grouting composite and improve the value of practical application on seepage prevention of tunnel.


2021 ◽  
Author(s):  
Yonggang Du ◽  
Gonghui Shi ◽  
Hui Wang ◽  
Ge Zhao ◽  
Wei Li ◽  
...  

Abstract The novel bio-based epoxy resin based on naringenin was synthesized. The naringenin epoxy/UiO-66 composites were prepared by casting process with UiO-66 as modifier and maleic anhydride as curing agent. The influences of UiO-66 content on mechanical properties, thermal stability and flame retardancy of naringenin epoxy/UiO-66 composites were investigated. The results showed that the impact strength, glass transition temperature and limiting oxygen index of pure naringenin epoxy resin were 2.0 kJ/m2, 96 ℃ and 1.2% higher than that of di-glycidyl ether of bisphenol A (DGEBA), respectively. UiO-66 can significantly improve the impact strength of naringenin epoxy resin while assisting improve its flame retardancy. When UiO-66 content was 4 wt%, the impact strength and limiting oxygen index of the naringenin epoxy/UiO-66 composite were 7.6 kJ/m2 and 24.5%, which were 85.4% and 3.5% higher than that of pure naringin epoxy resin, respectively.


2019 ◽  
Vol 32 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Weiwei Zhang ◽  
Hongjuan Wu ◽  
Weihua Meng ◽  
Jiahe Li ◽  
Yumeng Cui ◽  
...  

Nanowires, nanosheets, and microflowers of nickel ammonium phosphate (NiNH4PO4·H2O) were synthesized by a mixed solvothermal method and used to improve the flame retardancy of epoxy resin (EP). The solvent concentration and surfactant content were found to play a key role in nucleation and growth of NiNH4PO4·H2O. The structure of NiNH4PO4·H2O was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The flame retardancy, thermostability, mechanical properties, and flame retardancy mechanism of EP/NiNH4PO4·H2O composites were analyzed using the limiting oxygen index (LOI), cone calorimetry (Cone), mechanical property tests, thermogravimetric analysis, and thermogravimetric–Fourier transform infrared spectroscopy. The results indicated that NiNH4PO4·H2O has proper thermal stability and greatly improves the flame retardancy of EP. The nanosheets outperformed the other morphologies; the EP/5% NiNH4PO4·H2O nanosheets have an LOI of 35.2%, which exceeds that of pure EP (24.7%). Furthermore, Cone showed that these nanosheets have the lowest peak heat release rate and peak smoke production rate, which are 69.1% and 36.5% lower than those of pure EP, respectively. NiNH4PO4·H2O can promote the formation of a stable char layer and release nonflammable gases, thus protecting the matrix by preventing heat and oxygen transfer and reducing the concentration of combustible gas. NiNH4PO4·H2O is expected to serve as a new high-efficiency flame retardant for EP.


2013 ◽  
Vol 634-638 ◽  
pp. 1927-1930 ◽  
Author(s):  
Jia Chen ◽  
Ji Yan Liu ◽  
Xue Qing Liu ◽  
Shan Sun

In this paper, magnesium methylcyclohexylphosphinate (Mg(MHP)) was used as flame retardant for epoxy resin(EP).The flame retardancy and thermal stability of Mg(MHP)/EP composites have been studied. As a result, the composite with 20-25% Mg(MHP) can achieve the satisfying flame retardancy with the limiting oxygen index (LOI) of 29.05 % and passing the UL-94 V-0 rating. TG results showed that adding Mg(MHP) into EP leads to a increase in the onset temperature of degradation and depresses the thermal decomposition below around 470 °C. Beyond 470 °C, the residue char of the composites lost more quickly compared to neat EP. A preliminary study seem to conclude that Mg(MHP) acts as the condensed source by promoting the char formation below around 470 oC and as the gas source by vaporizing at higher temperature.


2019 ◽  
Vol 953 ◽  
pp. 179-184
Author(s):  
Yong Li Peng ◽  
Can Zhang ◽  
Ni An Zhuo

Using 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10 oxide (DOPO) and N-methylol acrylamide as the main raw materials, the curing agent DOPO-NMA was synthesized. The flame retardant curing agent DOPO-NMA and E-51 epoxy resin (EP) were then cured to obtain epoxy resin E-51 system, and its flame retardancy, thermal stability and mechanical properties were studied. The results showed that the tensile, bending and impact strength of the cured system decreased with the increase of phosphorus mass fraction in the resin system, and the flame retardancy rating, limiting oxygen index (LOI) and char yield at 700°C increased with the increase of phosphorus mass fraction in the resin system.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Tuan Anh Nguyen ◽  
Quang Tung Nguyen ◽  
Trong Phuc Bach

This paper reports the improvement of the mechanical properties and flame retardant properties of epoxy Epikote 240/nanoclay I.30E/multiwalled carbon nanotube nanocomposite prepared by mechanical stirring method combined with ultrasonic vibration, nanoclay I.30E content (1; 2; 3 wt.%) and content of MWNT (0.01; 0.02; 0.03 wt.%). When burned, MWCNT reduces degradation speed of epoxy Epikote 240 resin and increases the char yield, and nanoclay acts as an energy storage medium to hinder the heat transfer in epoxy resin. The limiting oxygen index value and UL94 test indicated improvement of flame retardancy of the nanocomposites. The results exhibit the potentiality of these based epoxy Epikote 240 resin/nanoclay I.30E/MWCNTs nanocomposites for multifaceted advanced applications. These fillers can produce environmental friendly products with high thermal and mechanical properties.


2017 ◽  
Vol 50 (4) ◽  
pp. 339-353 ◽  
Author(s):  
Quan Zhou ◽  
Lu Yan ◽  
Xuejun Lai ◽  
Hongqiang Li ◽  
Xingrong Zeng

A new kind of polypropylene/ethylene–propylene–diene monomer (PP/EPDM) thermoplastic elastomer (TPE) with good mechanical properties and flame retardancy was prepared via in situ peroxide-induced dynamic vulcanization using lanthanum trimethacrylate (LaTMA) as a reinforcing agent. The morphology, structure, and mechanical properties and reinforcement mechanism of PP/EPDM/LaTMA TPE were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, rubber process analyzer, cross-link density test, and so on. The flame retardancy was investigated by limiting oxygen index (LOI) test. The results showed that when the amount of lanthanum oxide was 4.96 phr and methyl methacrylate was 7.85 phr, the compatibility between EPDM and PP was greatly improved. Besides, the tensile strength, tear strength, elongation at break, and hardness (shore A) of PP/EPDM/LaTMA TPE were increased from 6.2 MPa, 41.7 kN m−1, 148%, and 81 up to 11.1 MPa, 77.3 kN m−1, 365%, and 89, respectively. And the LOI of PP/EPDM/LaTMA TPE was increased to 19.0%. The SEM images, the higher G′, and the ionic cross-link suggested that a strong filler–filler network was formed by the polymerization and the grafted of LaTMA in the PP and EPDM phase which enhanced the compatibility between PP and EPDM. The DSC and FTIR results further proved that during the processing.


2021 ◽  
pp. 095400832199241
Author(s):  
Zijin Luo ◽  
Zhe Chen ◽  
Jun Wei ◽  
Dongchao Wang ◽  
Han Chen ◽  
...  

A novel intumescent flame retardant, PPMD, was designed from phosphaphenanthrene and nitrogen heterocycles through the two-step gut reactions of 1,4-phthalaldehyde and 3-methyl-1-phe-nylpyrazol-5-ylamine. After determination of its structure by nuclear magnetic resonance and Fourier-transform infrared analyses, PPMD was added to an epoxy resin (EP) to facilitate a curing process. Thus, EP/PPMD samples with excellent transparency and flame retardancy were acquired. For example, the EP sample satisfied the UL-94 V-0 standard and achieved a limiting oxygen index value of 30.5% because of the incorporation of 5 wt% PPMD. The cone calorimeter test of the EP/5% PPMD sample revealed that its total smoke production (TSP) and total heat release (THR) values of EP/5% PPMD was only 22.5% and 56.4% of the control group, respectively. Moreover, the average effective heat of combustion (av-EHC) value of EP/5% PPMD was reduced by 34.1%, indicating that PPMD possessed high flame-inhibition activity and smoke suppression efficiency. The flame-retardant mechanisms of PPMD were also investigated in gas phase by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and in condensed phase by XPS and IR.


2017 ◽  
Vol 30 (3) ◽  
pp. 318-327 ◽  
Author(s):  
Mengjiao Wang ◽  
Shijiang Fang ◽  
Heng Zhang

In this article, inherent flame-retardant epoxy ether, 9,10-dihydro-9-oxa-10-[1,1-bis(4-glycidyloxyphenyl)ethyl]-10-phosphaphenanthrene 10-oxide (DPBAEP), with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide moieties was synthesized via an economical method and was used to improve the flame retardancy of 4,4′-tetradiglycidyl diaminodiphenyl methane (TGDDM). A series of epoxy resins were prepared and cured with 4,4′-diaminodiphenyl sulfone. The glass transition temperatures ( Tg) of resin composites were above 243°C and decreased only slightly after DPBAEP was added. The thermal stabilities under the nitrogen (N2) and air atmosphere were also measured using thermogravimetric analysis. The results indicated that DPBAEP had a high decomposition temperature and affected the thermal degradation and promoted the charring of resins. When only over 5 wt% of DPBAEP was introduced, the thermosets obtained a high limiting oxygen index value of around 33.0%, achieved vertical burning V-0 rating and presented fast-swelling char barriers. In order to better understand the flame-retardant mechanisms, the residual char was investigated by scanning electron microscopy observation and Fourier transform infrared spectra. We inferred that the phosphorus (P) moieties reacted with the resin matrix, which played a significant role in promoting the formation of char with special structure, as well as making it rich and tough enough. This kind of char barrier could protect the underlying resin matrix against oxygen and heat transfer and inhibited volatile combustible from diffusing to the flame. Hence, thanks to the synergistic effect of P–N and the excellent compatibility, DPBAEP could impart excellent flame retardancy to TGDDM epoxy resin.


Sign in / Sign up

Export Citation Format

Share Document