Multi-response optimization of electrochemical machining parameters in the micro-drilling of AA6061-TiB2in situ composites using the Entropy–VIKOR method

Author(s):  
S Chandrasekhar ◽  
NBV Prasad

This article describes the multi-response optimization of electrochemical machining operating parameters such as voltage, concentration of the electrolyte, and current to maximize the rate of material removal in addition to minimize the over cut and delamination at the same time in micro-drilling of AA6061-TiB2 in situ composite. A novel Entropy–VIKOR method is applied to handle such mutually conflicting responses. The weight of each response is computed from the entropy method, and VIKOR method is used to rank the various levels of parameters. This method yields the combination of 2 mol of electrolyte concentration, 16 V of applied voltage, and 4 A of current as optimal parameters to minimize the over cut and delamination in addition to maximize the rate of material removal at the same time. This optimal process-governing parameters satisfied the conditions for compromising solution such as acceptable advantage and acceptable stability condition. The response graph illustrates that, of the parameters investigated, electrolyte concentration has the greatest effect on the VIKOR index, followed by applied voltage and current. Scanning electron microscopic analysis illustrates that the radius of the hole is equal throughout the periphery, except for one instance of micro-delamination.

Author(s):  
Sadineni Rama Rao ◽  
G. Padmanabhan

The present work reports the electrochemical machining (ECM) of the aluminium-silicon alloy/boron carbide (Al-Si /B4C) composites, fabricated by stir casting process with different weight % of B4C particles. The influence of four machining parameters including applied voltage, electrode feed rate, electrolyte concentration and percentage of reinforcement on the responses surface roughness (SR) and radial over cut (ROC) were investigated. The process parameters are optimized based on the response surface methodology (RSM) and the optimum values for minimizing surface roughness and radial over cut are voltage 15.25 V, feed rate 1.0 mm/min, electrolyte concentration 13.56g/lit and percentage of reinforcement 7.36 wt%. The quality of the machined surfaces is studied by using scanning electron microscopic (SEM) images. The surface plots are generated to study the effect of process parameters and their interaction on the surface roughness and radial over cut, for the machined Al-Si/B4C composites.


2017 ◽  
Vol 12 (4) ◽  
pp. 72-80 ◽  
Author(s):  
Abbas Fadhil Ibrahim

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Signal-to-noise (S/N), the analysis of variance (ANOVA) was employed to find the optimal levels and to analyze the effect of electrochemical machining parameters on Ra and MRR. The surface roughness of the workpiece was decreased with the increase in current values and electrolyte concentration while causing an increase in material removal rate. The ability of the independent values to predict the dependent values (R2) were 87.5% and 96.3% for mean surface roughness and material removal rate, respectively.


2018 ◽  
Vol 777 ◽  
pp. 327-332
Author(s):  
Ornsurang Netprasert ◽  
Noppakao Chimyo ◽  
Suphaphich Phimphun ◽  
Jantakarn Sukjan ◽  
Viboon Tangwarodomnukun ◽  
...  

Electrochemical machining process is an advanced material removal technique offering high precision and introducing no heat damage to the work material. The shape and size of machined area are highly dependent on some process parameters such as voltage, electrolyte and inter-electrode gap. To further enable a more insight into the process performance, this paper investigates the influences of applied voltage, electrolyte concentration and inter-electrode gap on the shape and sizes of hole produced by the electrochemical drilling process. Titanium alloy (Ti-6Al-4V) was used as a work sample in this study as it has been extensively used in many advanced applications. The experimental result indicated that the use of high voltage and high electrolyte concentration can enlarge and deepen hole in the workpiece, while the inter-electrode gap provided less effect to the hole features. The maximum hole depth can reach 300 μm within 60 seconds when the applied voltage of 30 V, the inter-electrode gap of 10 μm and the electrolyte concentration of 10%wt were used. However, with this setup, the obtained cut profile became a non-uniform V-shaped hole. The use of lower voltage was instead recommended to yield a better cut quality with U-shaped profile.


2013 ◽  
Vol 13 (1-2) ◽  
pp. 31-36
Author(s):  
Sadineni Rama Rao ◽  
G. Padmanabhan

AbstractElectrochemical machining (ECM) is increasing its importance in machining of metal matrix composites (MMC) due to some specific advantages which can be exploited during machining operation. In ECM the quality of the surface produced is also depends on the workpiece physical and electrical properties along with the process parameters like voltage, feed rate, electrolyte concentration, type of electrolyte, current, gap between electrodes etc. Therefore, in the present work the percentage of reinforcement of the particulates in the matrix is considered one of the process parameters along with the applied voltage, electrode feed rate and electrolyte concentration. A mathematical prediction model of the radial over cut (ROC) was developed using response surface methodology (RSM). The effects of electrochemical machining parameters on the Radial over cut were evaluated. The contour plots were drawn to study the effect of various process parameters and their interaction. In this work the predicted values and measured values are quite close to each other. Therefore, the developed model can be effectively used to predict the radial over cut on electrochemical machining of Al-B4C composites.


Author(s):  
Harsha Goel ◽  
Usharani Rath ◽  
Pulak M Pandey

Ultrasonic-assisted jet electrochemical micro drilling is an advanced variant of electrochemical machining to drill micro holes quickly and efficiently. The present article deals with the modelling and simulation of the integration of ultrasonic vibration with the conventional jet electrochemical micro drilling process. Multi-physics-based modelling and simulation approach has been used in the present work. The flow pattern of electrolyte jet was analysed for both jet electrochemical micro drilling and ultrasonic-assisted jet electrochemical micro drilling processes. The simulation results were validated with the previous experimental findings of ultrasonic-assisted jet electrochemical micro drilling process. It was found that the material removal rate (MRR) improved significantly as the ultrasonic wave got superimposed onto the electrolyte jet. In addition to that, voltage and concentration of the electrolyte also played vital roles in improving the MRR.


Author(s):  
A K Dubey

Electrochemical honing (ECH) is an electrolytic precision mircofinsihing technology based on the hybridization of the electrochemical machining and conventional honing process principles to provide the controlled functional surface generation and fast material removal capabilities in a single action. This paper presents the distinctive findings of comprehensive experimental investigations designed to explore the influence of key ECH process parameters on the work surface microgeometrical, part-macrogeometrical, and material removal aspects. The current intensity, electrolyte concentration, stick-out pressure, and stick grit size are found to be the major players in the process. Interactions between current intensity, electrolyte concentration, and speed ratio play a vital role, specifically for macrogeometrical performance. Proper electrolyte composition and stick grit-size selections and a distinct coordination of electrolytic dissolution and mechanical scrubbing are crucial for the optimal performance. Work surface characterization reveals a nano-finished plateau-honed work surface featured with a uniform roughness value, impressive surface characteristic parameters, no trace of cold-worked material, or any adverse effect of the process. This, accompanied with precise part macro- geometry, can result in an unexcelled tribological performance of the components. Key features of an ECH set-up that was designed and developed incorporating several unique features are also highlighted.


Author(s):  
Bijan Mallick ◽  
Sumit Biswas ◽  
Biplab Ranjan Sarkar ◽  
Biswanath Doloi ◽  
Bijoy Bhattacharyya

The electro-chemical discharge micro-machining (µ-ECDM) process can be utilised as a potential micro-machining process, which offers several advantages such as cost-effectiveness and diversity in applications on electrically non-conducting hard brittle materials like glass. The present research article includes the analysis of material removal rate (MRR), width of cut (WOC), heat affected zone (HAZ), and surface roughness (Ra) during µ-channeling on glass with a micro-ECDM process, considering applied voltage (V), electrolyte concentration (wt%), and tool shapes as process parameters. A comparative study is conducted to select the suitable tool shape and electrolyte. Moreover, the optical and SEM images are used to examine HAZ, WOC and topography of µ-channels. MRR and WOC enhance with the rise of applied voltage for fixed electrolyte concentration and vary with tool shape. Surface roughness (Ra) is found low at applied voltage of 55V and 60V for both electrolytes when straight and curved tools, respectively, are used. The straight tool shape is more suitable for µ-channeling on glass by µ-ECDM.


2012 ◽  
Vol 585 ◽  
pp. 417-421 ◽  
Author(s):  
Chandra Shekhar Jawalkar ◽  
Pradeep Kumar ◽  
Apurbba Kumar Sharma

Micromachining has been gaining wide importance in today’s industrial and research applications. It represents techniques/ methods to achieve small features (less than 1mm) on varied parts and components. A microcontroller is widely used to control such processes to obtain the desired dimensional accuracy. It is programmed to guide the tool in a controlled path to provide required precision in an advanced manufacturing process. Microcontrollers are cheaper alternatives as compared to servo controllers. They can be coupled with developed experimental setups and further with computers to get micro machined aspects realized in the laboratory. In the current paper, a VMC-850X microprocessor with a 8085 based VMC 8501 control unit was used to machine microchannels on a special optical glass workpiece. Material removal (MR) and tool wear (TW) were measured as the response characteristic, while the variable process parameters were applied voltage, electrolyte concentration and tool speed. The obtained experimental results showed that all the parameters were significant. The applied voltage had 85.58% effect in MR and 66.71% effect in TW study. The FESEM micrograph could provide useful information on material removal mechanism.


2013 ◽  
Vol 634-638 ◽  
pp. 2839-2842
Author(s):  
Lih Wu Hourng ◽  
Bing Chi Li ◽  
Chen I Lai

The purpose of present paper is to fabricate tungsten rods with diameter of 200 μm to micro-pin electrodes, which have small conical angle and high aspect ratio, by the use of electrochemical machining process. The influence of working parameters, such as: applied voltage, electrolyte concentration, anode depth, and drawing speed on the machining process is investigated. Experimental results show that the applied voltage and electrolyte concentrate will affect the surface precision as the machining current is small than the limiting current. The anode immersed depth combined with a suitable drawing velocity has a significant effect on the conical angle (conicity) and aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document