scholarly journals Validation of variable helix milling instability islands

Author(s):  
Luis Enrique Ureña Mendieta ◽  
Erdem Ozturk ◽  
Neil D Sims

During machining, it is well-known that unstable self-excited vibrations known as regenerative chatter can limit productivity. There has been a great deal of research that has sought to understand regenerative chatter, and to avoid it through modifications to the machining process. One promising approach is the use of variable helix tools. Here, the time delay between successive tooth passes is intentionally modified, in order to improve the boundary of instability. Previous research has predicted that such tools can offer significant performance improvements whereby islands of instability occur in the stability lobe diagram. By avoiding these islands, it is possible to avoid regenerative chatter, at depths of cut that are orders of magnitude higher than for traditional tools. However, to the authors’ knowledge, these predictions have not been experimentally validated, and there is limited understanding of the parameters that can give rise to these improvements. The present study seeks to address this shortfall. A recent approach to analysing regenerative chatter stability is modified, and its numerical convergence is shown to outperform alternative methods. It is then shown that islands of instability only emerge at relatively high levels of structural damping, and that they are particularly susceptible to model convergence effects. The model predictions are validated against detailed experimental data that uses a specially designed configuration to minimise experimental error. To the authors’ knowledge, this provides the first experimentally validated study of unstable islands in variable helix milling, whilst also demonstrating the importance of structural damping and numerical convergence on the prediction accuracy.

Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben-Jaber

The development of the manufacturing-based industries is principally due to the improvement of various machining operations. Experimental studies are important in researches, and their results are also considered useful by the manufacturing industries with their aim to increase quality and productivity. Turning is one of the principal machining processes, and it has been studied since the 20th century in order to prevent machining problems. Chatter or self-excited vibrations represent an important problem and generate the most negative effects on the machined workpiece. To study this cutting process problem, various models were developed to predict stable and unstable cutting conditions. Stability analysis using lobes diagrams became useful to classify stable and unstable conditions. The purpose of this study is to analyze a turning process stability using an analytical model, with three degrees of freedoms, supported and validated with experimental tests results during roughing operations conducted on AU4G1 thin-walled tubular workpieces. The effects of the tubular workpiece thickness, the feed rate and the tool rake angle on the machining process stability will be presented. In addition, the effect of an additional structural damping, mounted inside the tubular workpiece, on the machining process stability will be also studied. It is found that the machining stability process is affected by the tubular workpiece thickness, the feed rate and the tool rake angle. The additional structural damping increases the stability of the machining process and reduces considerably the workpiece vibrations amplitudes. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces. The influence of this behavior on the stability of the machining process is assumed to be preponderant.


Author(s):  
Aaron Lalley ◽  
Mark Bedillion

Regenerative machining chatter or resonance in the machining process has traditionally been modeled with the stability lobe approach. This paper presents a new time based direct simulation model and compares it with traditional stability lobe modeling. The direct model has the ability to discriminate directional and time information, resulting in a number of advantages over frequency-based stability lobe analysis.


Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben Jaber

Nowadays, industrialists, especially those in the automobile and aeronautical transport fields, seek to lighten the weight of different product components by developing new materials lighter than those usually used or by replacing some massive parts with thin-walled hollow parts. This lightening operation is carried out in order to reduce the energy consumption of the manufactured products while guaranteeing optimal mechanical properties of the components and increasing quality and productivity. To achieve these objectives, some research centers have focused their work on the development and characterization of new light materials and some other centers have focused their work on the analysis and understanding of the encountered problems during the machining operation of thin-walled parts. Indeed, various studies have shown that the machining process of thin-walled parts differs from that of rigid parts. This difference comes from the dynamic behavior of the thin-walled parts which is different from that of the massive parts. Therefore, the purpose of this paper is to first highlight some of these problems through the measurement and analysis of the cutting forces and vibrations of tubular parts with different thicknesses in AU4G1T351 aluminum alloy during the turning process. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces and the influence of this behavior on the variations of the chip thickness and cutting forces is assumed to be preponderant. The second objective is to provide manufacturers with a practical solution to the encountered vibration problems by improving the structural damping of thin-walled parts by additional damping. It is found that the additional structural damping increases the stability of the cutting process and reduces considerably the vibrations amplitudes.


Author(s):  
Neil D Sims

Regenerative chatter is a well-known form of self-excited vibration that limits the productivity of machining operations, in particular for milling. Variable helix tools have been previously proposed as a means of avoiding regenerative chatter, and although recent work has analysed the stability of such tools there has not always been a strong agreement with experimentally observed behaviour. Furthermore, the analysis of variable helix tool stability can be tedious and numerically slow, compared to standard tools. Consequently it has been difficult to gain insight into the potential advantages of variable helix tools. The present work attempts to address these issues, by first developing an efficient approach to variable helix tool stability based upon the Laplace transform. Then, this new analysis method is used to demonstrate the importance of multi-frequency effects and nonlinear cutting stiffness. The work suggests that whilst variable-helix tools can have more operating regions that are stable, un-modelled behaviour (such as nonlinearity and multi-frequency effects) can have a critical influence on the accuracy of model predictions.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1639
Author(s):  
Seungmin Jung ◽  
Jihoon Moon ◽  
Sungwoo Park ◽  
Eenjun Hwang

Recently, multistep-ahead prediction has attracted much attention in electric load forecasting because it can deal with sudden changes in power consumption caused by various events such as fire and heat wave for a day from the present time. On the other hand, recurrent neural networks (RNNs), including long short-term memory and gated recurrent unit (GRU) networks, can reflect the previous point well to predict the current point. Due to this property, they have been widely used for multistep-ahead prediction. The GRU model is simple and easy to implement; however, its prediction performance is limited because it considers all input variables equally. In this paper, we propose a short-term load forecasting model using an attention based GRU to focus more on the crucial variables and demonstrate that this can achieve significant performance improvements, especially when the input sequence of RNN is long. Through extensive experiments, we show that the proposed model outperforms other recent multistep-ahead prediction models in the building-level power consumption forecasting.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5748
Author(s):  
Zhibo Zhang ◽  
Qing Chang ◽  
Na Zhao ◽  
Chen Li ◽  
Tianrun Li

The future development of communication systems will create a great demand for the internet of things (IOT), where the overall control of all IOT nodes will become an important problem. Considering the essential issues of miniaturization and energy conservation, in this study, a new data downlink system is designed in which all IOT nodes harvest energy first and then receive data. To avoid the unsolvable problem of pre-locating all positions of vast IOT nodes, a device called the power and data beacon (PDB) is proposed. This acts as a relay station for energy and data. In addition, we model future scenes in which a communication system is assisted by unmanned aerial vehicles (UAVs), large intelligent surfaces (LISs), and PDBs. In this paper, we propose and solve the problem of determining the optimal flight trajectory to reach the minimum energy consumption or minimum time consumption. Four future feasible scenes are analyzed and then the optimization problems are solved based on numerical algorithms. Simulation results show that there are significant performance improvements in energy/time with the deployment of LISs and reasonable UAV trajectory planning.


2011 ◽  
Vol 44 (6) ◽  
pp. 1272-1276 ◽  
Author(s):  
Koichi Momma ◽  
Fujio Izumi

VESTAis a three-dimensional visualization system for crystallographic studies and electronic state calculations. It has been upgraded to the latest version,VESTA 3, implementing new features including drawing the external morphology of crystals; superimposing multiple structural models, volumetric data and crystal faces; calculation of electron and nuclear densities from structure parameters; calculation of Patterson functions from structure parameters or volumetric data; integration of electron and nuclear densities by Voronoi tessellation; visualization of isosurfaces with multiple levels; determination of the best plane for selected atoms; an extended bond-search algorithm to enable more sophisticated searches in complex molecules and cage-like structures; undo and redo in graphical user interface operations; and significant performance improvements in rendering isosurfaces and calculating slices.


2017 ◽  
Vol 107 (04) ◽  
pp. 301-305
Author(s):  
E. Prof. Uhlmann ◽  
F. Kaulfersch

Partikelverstärkte Titanmatrix-Verbundwerkstoffe erlauben erhebliche Leistungssteigerungen im Bereich hochtemperaturbeanspruchter Struktur- und Funktionsbauteile. Die durch die Partikelverstärkung gesteigerte Verschleißbeständigkeit, Festigkeit und Härte bedeuten eine große Herausforderung an die spanende Bearbeitung derartiger Hochleistungswerkstoffe. Mittels Zerspanuntersuchungen beim Fräsen konnten unter Variation der Werkzeuggeometrie, der Schneidstoffe und der Prozessstrategie Parameterbeiche identifiziert werden, mit denen die prozesssichere Zerspanung partikelverstärkter Titanmatrix-Verbundwerkstoffe möglich ist.   Particle-reinforced titanium matrix composites ensure significant performance improvements of structural and functional high-temperature components. However, the high wear resistance, toughness and hardness due to particle reinforcement is a major challenge in machining these high performance materials. By conducting milling experiments with a variation of tool geometry, cutting material and process strategy, process parameters could be identified that enable efficient machining of particle-reinforced titanium matrix composites.


1968 ◽  
Vol 21 (3) ◽  
pp. 641 ◽  
Author(s):  
RS Saxena ◽  
KC Gupta ◽  
ML Mittal

Potentiometric and conductometric studies of the nickel-thiomalic acid system, in aqueous medium of 0. lM KNO3, reveal the formation of two complexes; one light violet 1 : 1 predominating at pH 6.5-7.5 and another deep violet 1 : 2 in the pH range 8.5-10.0. The stability constants of the complexes formed have been determined by applying Calvin and Melchior's extension of Bjerrum's method at three different temperatures and were further refined by using alternative methods. The logK values (final) for 1 : 1 and 1 : 2 complexes at 20, 25, and 30� have been found to be 7.86, 7.87, 7.96, and 6.24, 6.31, 6.39 respectively. The values of the overall changes in ΔG, ΔH, and ΔS accompanying the reaction have also been evaluated at 25� and found to be -19.31 kcal/mole, -8.77 kcal/mole, and +35.36 cal/deg respectively.


Author(s):  
Minghui Zheng ◽  
Masayoshi Tomizuka

Vibration with multiple large peaks at high frequencies may cause significant performance degradation and have become a major concern in modern high precision control systems. To deal with such high-frequency peaks, it is proposed to design a frequency-shaped sliding mode controller based on H∞ synthesis. It obtains an ‘optimal’ filter to shape the sliding surface, and thus provides frequency-dependent control allocation. The proposed frequency-shaping method assures the stability in the presence of multiple-peak vibration sources, and minimizes the weighted H∞ norm of the sliding surface dynamics. The evaluation is performed on a simulated hard disk drive with actual vibration sources from experiments, and the effectiveness of large vibration peak suppression is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document