Modelling and diagnosis of big-end bearing knock fault in internal combustion engines

Author(s):  
Jian Chen ◽  
Robert Randall ◽  
Ningsheng Feng ◽  
Bart Peeters ◽  
Herman Van der Auweraer

Big-end bearing knock is considered to be one of the common mechanical faults in internal combustion engines (IC engines). In this paper, a model has been built to simulate the effects of oversized clearance in the big-end bearing of an engine. In order to find a relationship between the acceleration response signal and the oversized clearance, the kinematic/kinetic and lubrication characteristics of the big ending bearing were studied. By adjusting the clearance, the impact forces with different levels of bearing knock fault can be simulated. The acceleration on the surface of the engine block was calculated by multiplying the simulated force spectrum by an experimentally measured frequency response function (FRF) in the frequency domain (and then inverse transforming to the time domain). As for experimentally measured vibration signals from bearing knock faults, the signal processing approach used involved calculating the squared envelopes of the simulated acceleration signals. The comparison to the experimental results demonstrated that the simulation model can correctly simulate vibration signals with different stages of bearing knock faults.

2020 ◽  
Vol 10 (11) ◽  
pp. 3705
Author(s):  
Ahmad Alshwawra ◽  
Florian Pohlmann-Tasche ◽  
Frederik Stelljes ◽  
Friedrich Dinkelacker

Reducing friction is an important aspect to increase the efficiency of internal combustion engines (ICE). The majority of frictional losses in engines are related to both the piston skirt and piston ring–cylinder liner (PRCL) arrangement. We studied the enhancement of the conformation of the PRCL arrangement based on the assumption that a suitable conical liner in its cold state may deform into a liner with nearly straight parallel walls in the fired state due to the impact of mechanical and thermal stresses. Combining the initially conical shape with a noncircular cross section will bring the liner even closer to the perfect cylindrical shape in the fired state. Hence, a significant friction reduction can be expected. For the investigation, the numerical method was first developed to simulate the liner deformation with advanced finite element methods. This was validated with given experimental data of the deformation for a gasoline engine in its fired state. In the next step, initially conically and/or elliptically shaped liners were investigated for their deformation between the cold and fired state. It was found that, for liners being both conical and elliptical in their cold state, a significant increase of straightness, parallelism, and roundness was reached in the fired state. The combined elliptical-conical liner led to a reduced straightness error by more than 50% compared to the cylindrical liner. The parallelism error was reduced by 60% to 70% and the roundness error was reduced between 70% and 80% at different liner positions. These numerical results show interesting potential for the friction reduction in the piston-liner arrangement within internal combustion engines.


2019 ◽  
Vol 11 (23) ◽  
pp. 6585 ◽  
Author(s):  
Markiewicz ◽  
Muślewski

The application of fuels from renewable energy sources for combustion engine powering involves a great demand for this kind of energy while its production infrastructure remains underdeveloped. The use of this kind of fuel is supposed to reduce the emission of greenhouse gases and the depletion of natural resources and to increase the share of renewable energy sources in total energy consumption and thus support sustainable development in Europe. This study presents the results of research on selected performance parameters of transport by internal combustion engines including: power, torque, the emission of sound generated by the engine, the content of exhaust components (oxygen O2, carbon monoxide CO, carbon dioxide CO2, nitrogen dioxide NO2), and the content of particulate matter (PM) in exhaust emission. Three self-ignition engines were tested. The fuel injection controllers of the tested internal combustion engines were additionally adjusted by increasing the fuel dose and the load of air. The material used in the tests were mixtures of diesel oil and fatty acid methyl esters of different concentration. A statistical analysis was performed based of the results. The purpose of the work was to develop a resulting model for assessing the operation of engines fueled with biofuel and diesel mixtures while changing the vehicle's computer software. A computer simulation algorithm was also developed for the needs of the tests which was used to prognose the state of the test results for variable input parameters.


2004 ◽  
Vol 118 (1) ◽  
pp. 51-59
Author(s):  
Bartosz CZECHYRA ◽  
Grzegorz SZYMAŃSKI ◽  
Franciszek TOMASZEWSKI

In this article authors show the possibillities of using the parameters of vibration signals to estimate valve clearance in internal combustion engines. The main methodological assumptions of signal analysis and their results have been presented herein. The concept of research so as to solve the valve clearance diagnostic problem, based on the vibration signal, has been shown as well.


2020 ◽  
Vol 91 (4) ◽  
pp. 49-58
Author(s):  
I. V. Bryhadyr ◽  
I. V. Panova

The role of legislation and state policy in minimizing the impact of threats to environmental safety in the field of automobile transport has been studied. The main directions of the development of state policy and legislation in the field of reducing the negative impact of motor vehicles on the environment and public health have been defined. The main problems of reducing the negative impact of motor vehicles on the environment and public health, as well as the development of state and legal mechanisms to overcome them have been determined. The main environmental problems faced by governments are the use of internal combustion engines and fuel quality indicators. Many EU countries are refusing to further impose more strict requirements on the operation of motor fuel engines, instead introducing mechanisms to completely abandon such vehicle propulsion systems. However, such a refusal raises another problem of greening of road transport – the problem of electrification of transport, in the process of which it is necessary to solve the problems of transport energy and disposal of used batteries of electric vehicles. The authors have emphasized on inexpediency that to be limited in the long run only to mechanisms for setting more strict emission requirements for cars. The authors have indicated the need for a comprehensive approach to solving environmental problems to prevent the emergence of new significant difficulties – the accumulation of used batteries of electric cars, the depletion of non-renewable resources for their manufacture, etc. It has been offered to join Ukraine to the pan-European initiative of electrification of road transport, to develop the state program for the transformation of the motor transport industry with clear deadlines for the introduction of restrictions on the use of internal combustion engines, to introduce mechanisms to financially stimulate the transition from internal combustion engines to electric combustion engines.


2020 ◽  
Author(s):  
Zbigniew Stępień

The undesirable deposits forming on the surfaces of various internal parts of reciprocating internal combustion engines and the systems operating in conjunction with them worsen during the operation of the engines and threaten their proper functioning. The deposits form as a normal result of the processes of fuel injection and creating and combusting the fuel–air mixture in engines. It was not investigated until the beginning of the 21st century, when extensive multi-directional research began not only to identify the causes of these deposits, the mechanisms behind their formation, and the factors leading to deposit growth, but also to determine the chemical composition of various groups of deposits. Such research became necessary because engines must comply with gradually tightening regulations on environmental protection, necessitating the introduction of increasingly complex engine designs and strategies for controlling the processes of precise and divided fuel injection into the combustion chambers and advanced algorithms for controlling the combustion processes according to the combustion system and the purpose of the engine. However, it became apparent that the co-functioning of the increasingly complex engine technologies and solutions, particularly of fuel injection systems, may be significantly disturbed by the deposits forming inside them. More and more complicated engine designs with tighter and tighter tolerances of the working parts necessitate the multi-directional testing of harmful deposits. An increasing number of factors affecting deposit formation are being identified, which leads to the development of increasingly complex classifications and subdivisions of deposits according to their type, composition, and form. At the same time, the search for lower emissions and greater engine efficiency is driving further mechanical changes in engines and vehicles. The higher temperatures and pressures connected with these changes are likely to impact the fuel being handled within the fuel and combustion systems. Such effects will inevitably cause the deposit chemistry and morphology to change. The size of the coke deposits produced may disturb the processes of fuel atomization, of filling the engine combustion chambers and swirling the charge, and in consequence may affect the efficiency of filling and the quality of the fuel–air mixture. These problems led to the development of a number of standardized and unstandardized methods for assessing the size of deposits. It was found that in the case of SI engines, the deposits that most endanger correct engine operation are those which are formed in the combustion chambers, on the inlet valves, inlet ducts, and fuel injector tips. The most common sign of deterioration caused by deposits is the loss over time of the performance, usability, and operational value which were originally declared by the manufacturer. In the case of CI engines, the most dangerous are coke (carbon) deposits formed on the external surfaces of the fuel injector nozzle tips and inside the injector nozzle orifices. In Europe, mandatory procedures for assessing the size of different coke deposits formed on different components in both SI and CI engines are being developed by the Coordinating European Council for the Development of Performance Tests for Transportation Fuels, Lubricants, and Other Fluids (CEC). The theoretical part of this publication reports the problems of the deposits produced in reciprocating internal combustion engines and their fuel systems. It discusses standard and non-standard engine test methods for both quantitative and qualitative assessment of deposits and presents the significance of the assessment methods which are currently used for the classification of deposits. The publication also presents the scope of application and the usefulness of methods for determining the threats posed to the functioning of an engine by various types of deposits and methods for identifying the causes of deposit formation, in particular those related to the composition of the fuels and lubricating oils used. The effects which fuel composition and the engine’s construction and operating parameters have on various engine deposits, the possible causes of deposit formation, and the importance of modern deposit control additives and high-technology solutions in counteracting this detrimental phenomenon are also all discussed. The experimental part presents the results of research carried out at the Oil and Gas Institute – National Research Institute concerning: • the incomparability of measurements of fuel performance obtained from various engine tests, • studies on the influence of various deposit control additives on the formation of harmful engine deposits during engine tests, • the influence of fuel treatments on the deposit formation processes in internal combustion engines (described qualitatively or quantitatively), • determination of the impact which various chemical compounds, serving as contaminants within the fuels, have on deposit formation in internal combustion engines and fuel injection systems, • determination of the impact that various chemical structures of the compounds within the fuels and biofuel blends have on deposit formation in internal combustion engines and fuel injection systems, • studies on the influence of bio-components contained in both petrol and diesel fuels on tendency for deposits to form in internal combustion engines, and • multidirectional studies on the impact of FAME degradation processes in biodiesel fuel blends on the formation of harmful engine deposits.


Sign in / Sign up

Export Citation Format

Share Document