Numerical analysis of nonlinear functionally graded piezoelectric energy harvester subjected to multi moving oscillators

Author(s):  
P Fatehi ◽  
M Mahzoon ◽  
M Farid

In this paper, energy harvesting from nonlinear vibration of a functionally graded beam covered by a piezoelectric patch under multi-moving oscillators is studied. The material of both the substructure and the piezoelectric patch is assumed to be functionally graded in the thickness direction. A coupled system of equations considering Euler-Bernoulli beam theory and von-Karman nonlinearity as well as electromechanical coupling are derived using the generalized Hamilton’s principle. Finite element method as well as Newmark time integration scheme are used to solve the coupled nonlinear time dependent problem. The effects of different parameters including material distribution, velocity of the moving oscillators, piezoelectric patch thickness and load resistance on the output voltage and harvested power are investigated. Moreover, the effects of oscillator characteristics such as damping ratio and stiffness on the nonlinear behavior of the beam and harvested power are also studied. Results indicate that the aforementioned parameters have considerable effects on the harvested power. It is also shown that ignoring nonlinear effects may lead to erroneous and unacceptable results. To the best of authors’ knowledge, there is no study about energy harvesting from nonlinear vibration of beams under moving oscillators.

2021 ◽  
Author(s):  
Ry Long

Active constrained-layer damping (ACLD) treatment is the combination of passive and active features in the control of structural vibrations. A three-layer structure that consists of a functionally graded (FG) host beam, with a bonded viscoelastic layer and a constraining piezoelectric fiber-reinforce composite (PFRC) laminate is modeled and analyzed. The assumptions for modeling the system are the application of Timoshenko beam theory for the host beam and PFRC laminate, and a higher-order beam theory for the viscoelastic layer. The formulation is assumed to have field variables that are expressed as polynomials through the thickness of the structure and linear interpolation across the span. The extended Hamilton's principle is utilized to determine the system equations of motion, which are then solved using the Newmark time-integration scheme. Many support conditions such as fully- and partial-clamped cantilevered, partially clamped-clamped and simply-supported are analyzed. The effects of ply angle orientaion, as well as FG properties, are also carefully examined.


2021 ◽  
Author(s):  
Ry Long

Active constrained-layer damping (ACLD) treatment is the combination of passive and active features in the control of structural vibrations. A three-layer structure that consists of a functionally graded (FG) host beam, with a bonded viscoelastic layer and a constraining piezoelectric fiber-reinforce composite (PFRC) laminate is modeled and analyzed. The assumptions for modeling the system are the application of Timoshenko beam theory for the host beam and PFRC laminate, and a higher-order beam theory for the viscoelastic layer. The formulation is assumed to have field variables that are expressed as polynomials through the thickness of the structure and linear interpolation across the span. The extended Hamilton's principle is utilized to determine the system equations of motion, which are then solved using the Newmark time-integration scheme. Many support conditions such as fully- and partial-clamped cantilevered, partially clamped-clamped and simply-supported are analyzed. The effects of ply angle orientaion, as well as FG properties, are also carefully examined.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yue Zhao ◽  
Yi Qin ◽  
Lei Guo ◽  
Baoping Tang

Vibration-based energy harvesting technology is the most promising method to solve the problems of self-powered wireless sensor nodes, but most of the vibration-based energy harvesters have a rather narrow operation bandwidth and the operation frequency band is not convenient to adjust when the ambient frequency changes. Since the ambient vibration may be broadband and changeable, a novel V-shaped vibration energy harvester based on the conventional piezoelectric bimorph cantilevered structure is proposed, which successfully improves the energy harvesting efficiency and provides a way to adjust the operation frequency band of the energy harvester conveniently. The electromechanical coupling equations are established by using Euler-Bernoulli equation and piezoelectric equation, and then the coupled circuit equation is derived based on the series connected piezoelectric cantilevers and Kirchhoff's laws. With the above equations, the output performances of V-shaped structure under different structural parameters and load resistances are simulated and discussed. Finally, by changing the angle θ between two piezoelectric bimorph beams and the load resistance, various comprehensive experiments are carried out to test the performance of this V-shaped energy harvester under the same excitation. The experimental results show that the V-shaped energy harvester can not only improve the frequency response characteristic and the output performance of the electrical energy, but also conveniently tune the operation bandwidth; thus it has great application potential in actual structure health monitoring under variable working condition.


Author(s):  
Luã Guedes Costa ◽  
Luciana Loureiro da Silva Monteiro ◽  
Pedro Manuel Calas Lopes Pacheco ◽  
Marcelo Amorim Savi

Piezoelectric materials exhibit electromechanical coupling properties and have been gained importance over the last few decades due to their broad range of applications. Vibration-based energy harvesting systems have been proposed using the direct piezoelectric effect by converting mechanical into electrical energy. Although the great relevance of these systems, performance enhancement strategies are essential to improve the applicability of these system and have been studied substantially. This work addresses a numerical investigation of the influence of cubic polynomial nonlinearities in energy harvesting systems considering a bistable structure subjected to harmonic excitation. A deep parametric analysis is carried out employing nonlinear dynamics tools. Results show complex dynamical behaviors associated with the trigger of inter-well motion. Electrical power output and efficiency are monitored in order to evaluate the configurations associated with best system performances.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2198 ◽  
Author(s):  
Hoang Nam Nguyen ◽  
Tran Thi Hong ◽  
Pham Van Vinh ◽  
Do Van Thom

In this paper, a 2-node beam element is developed based on Quasi-3D beam theory and mixed formulation for static bending of functionally graded (FG) beams. The transverse shear strains and stresses of the proposed beam element are parabolic distributions through the thickness of the beam and the transverse shear stresses on the top and bottom surfaces of the beam vanish. The proposed beam element is free of shear-looking without selective or reduced integration. The material properties of the functionally graded beam are assumed to vary according to the power-law index of the volume fraction of the constituents through the thickness of the beam. The numerical results of this study are compared with published results to illustrate the accuracy and convenience rate of the new beam element. The influence of some parametrics on the bending behavior of FGM beams is investigated.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Carlos De Marqui ◽  
Wander G. R. Vieira ◽  
Alper Erturk ◽  
Daniel J. Inman

Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a cantilevered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions.


2017 ◽  
Vol 39 (3) ◽  
pp. 215-228 ◽  
Author(s):  
Tran Van Lien ◽  
Ngo Trong Duc ◽  
Nguyen Tien Khiem

Mode shapes of multiple cracked beam-like structures made of Functionally Graded Material (FGM) are analyzed by using the dynamic stiffness method. Governing equations in vibration theory of multiple cracked FGM beam are derived on the base of Timoshenko beam theory; power law variation of material; coupled spring model of crack and taking into account the actual position of neutral axis. A general solution of vibration in frequency domain is obtained and used for constructing dynamic stiffness matrix of the multiple cracked FGM Timoshenko beam element that provides an efficient method for modal analysis of multiple cracked FGM frame structures. The theoretical development is illustrated by numerical analysis of crack-induced change in mode shapes of multi-span continuous FGM beam.


Sign in / Sign up

Export Citation Format

Share Document