Modeling of multistage nonlinear Dual Mass Flywheel torsional damper based on smoothing function fitting

Author(s):  
Chen Long ◽  
Shi Wen-ku ◽  
Li Song ◽  
Chen Zhi-yong ◽  
Yu Yuan-bin

The smoothing function is used to solve the problem of low simulation efficiency of multi-stage stiffness Dual Mass Flywheel (DMF) model, and the influence of different smoothing functions and fitting factor β on the fitting effect is studied. Firstly, based on the analysis of the working principle of multi-stage stiffness DMF, a mathematical model of DMF considering multi-stage stiffness and damping nonlinearity is established, and the accuracy of the model is verified by bench test. Then, tanh function, arctangent function, and sigmoid function are used to smooth the segment points in the DMF model, which solves the problem of inefficiency and not easy to converge in simulation. Finally, a 3-DOF model of the transmission system with DMF is established to simulate and analyze the smooth effect of the smoothing function and the performance difference between different smoothing functions. The results show that the smoothing function can effectively improve the stability of the simulation model. By comparing the three smoothing functions, it can be seen that the sigmoid function has the most obvious effect, which can shorten the simulation time by 52%.

2013 ◽  
Vol 353-356 ◽  
pp. 3707-3712
Author(s):  
Zhi Dong Zhou ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Hong Ya Yue

For analyzing and evaluating the deformation features of channel goaf foundation and its effect on superstructure, according to the foundation reinforcement engineering of Ji-Liang Channel Check Gate, the comparative analysis on the differential settlement between the unfavorable foundation and natural foundation was performed by numerical simulation with FLAC3D. The computer results showed that the present foundation had obvious effect on the stability and security of the superstructure, so the engineering treatment are needed. Based on technical-economic comprehensive analysis among three treatment methods for strengthening the channel golf foundation with different kinds of filling, the reasonable method is put forward in this paper. By comparing mechanical characteristic of flashboard in channel goaf before and after strengthening, we confirmed the foundation stability of channel goaf and the security of the ground building which can satisfy the long term usage requirements.


Author(s):  
Sriram Srinivasan ◽  
Eric H. Maslen ◽  
Lloyd E. Barrett

This paper presents a method for quickly evaluating the effect of changes in bearing location on bearing design for stability of rotating machinery. This method is intended for use by rotating machinery designers to select the “best” bearing locations prior to the bearing design process. The purpose of the method is to improve the design process by separating the problem of determining the “best” bearing locations from that of determining the actual bearing design. The method is independent of the type of bearing employed. For each candidate bearing configuration, the method provides a scalar measure of the relative ability of bearings to meet stability specifications. Within certain limits, the stability specifications are defined by the designer. The scalar measure is used to rank the candidate bearing locations and thereby select the best one. The scalar measure is compared to a practical measure of magnetic bearing design such as the infinity norm of the controller for an example design of a multi-stage centrifugal compressor.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774625 ◽  
Author(s):  
Yulei Hou ◽  
Yi Wang ◽  
Guoning Jing ◽  
Yunjiao Deng ◽  
Daxing Zeng ◽  
...  

The chaos phenomenon often exists in the dynamics system of the mechanism with clearance and friction, which has obvious effect on the stability of the mechanism, then it is worthy of attention for identifying the relationship between the friction coefficient and the stability of the mechanism. Two rotational degrees of freedom decoupled parallel mechanism RU-RPR is taken as the research object. Considering the clearance existing in the revolute pair, Lankarani–Nikravesh contact force model is used to calculate the normal contact force, and the Coulomb friction force model is used to calculate the tangential contact force. The dynamics model is established using Newton–Euler equations, and the Baumgarte stabilization method is used to keep the stability of the numerical analysis. Then, the equations are solved using the fourth adaptive Runge–Kutta method, and the effect of the revolute pair’s clearance on the dynamic behavior is analyzed. Poincare mapping is plotted, and the bifurcation diagrams are analyzed with varying the friction coefficient corresponding to different values of clearance size. The research contents possess a certain theoretical guidance significance and practical application value on the analysis of the chaotic motion and its stability in the dynamics of the parallel mechanism.


Author(s):  
Ashutosh Kumar ◽  
Sashindra Kumar Kakoty

Steady-state and dynamic characteristics of two-lobe journal bearing, operating on TiO2 based Nano-lubricant has been obtained. The effective viscosity is obtained by using Krieger-Dougherty viscosity model for a given volume fraction of nanoparticle in the base fluid. Various bearing performance characteristics are then obtained by solving modified Reynolds equation for variable viscosity model and couple stress model. The stiffness and damping coefficients are also determined for various values of the volume fraction of the nanoparticle in the nanofluid. Results reveal that load carrying capacity and flow coefficient increase whereas friction variable decreases without affecting the stability condition of two-lobe journal bearing operating on TiO2 based nanolubricant. On the other hand attitude angle and dynamic coefficients remains constant for all the values of volume fraction of nanoparticle.


Author(s):  
Chenhui Jia ◽  
Haijiang Zhang ◽  
Shijun Guo ◽  
Ming Qiu ◽  
Wensuo Ma ◽  
...  

According to the gas film force variation law, when the bearing axis is slightly displaced from the static equilibrium position, displacement and velocity disturbance relation expressions for the gas film force increment are constructed. Moreover, combined with the bearing rotor system motion equation, calculation model equations for the gas film stiffness and damping coefficients are established. The axial and radial vibration and velocity of the gas bearings during operation are collected. The instantaneous stiffness and damping coefficients of the gas film are calculated by the rolling iteration algorithm using MATLAB. The dynamic changes in the gas film stiffness and damping under different motion states are analyzed, and the mechanism of the gas film vortex and oscillation is studied. The results demonstrate the following: (1) When the gas bearing is running in the linear steady state in cycle 1, the dynamic pressure effect is enhanced and the stability is improved by increasing the eccentricity; when the gas supply pressure is increased, the static pressure effect is enhanced and the gas film vortex is reduced, but the oscillation is strengthened. (2) With the increase in rotational speed, the gas film vortex force gradually exceeds the gas film damping force, and the stability gradually worsens, causing a fluctuation in the gas film stiffness and damping, following which singularity occurs and a half-speed vortex is formed. Meanwhile, the gas film oscillation is intensified, and the rotor enters the nonlinear stable cycle 2 state operation. (3) As the fluctuation of the film force increases, the instantaneous stiffness and damping oscillation of the film intensifies, most of the stiffness and damping coefficients exhibit distortion, and the rotor operation will enter a chaotic or unstable state. Therefore, the gas bearing stiffness and damping variation characteristics can be used to study and predict the gas bearing operating state. Finally, measures for reducing the vortex and oscillation of the gas film and improving the stability of the gas bearing operation are proposed.


2013 ◽  
Vol 712-715 ◽  
pp. 1241-1247
Author(s):  
Yun Peng Shao ◽  
Xi Jing Zhu ◽  
Meng Liu ◽  
Zhen Liu

The chatter caused by the inner factors of the machining system in the ultrasonic honing process would seriously affect the surface quality of combustion engine. A dynamical model of ultrasonic honing chatter system was established, which involved with ultrasonic honing mechanism and dynamic honing depth, the relationship between the limit honing width and honing speed was deduced based on the theory of regenerative chatter; the simulation was carried out to obtain the effect of different parameters including stiffness coefficient, damping ratio, spindle speed and reciprocation motion speed on the stability limit curve of the chatter system. It can be concluded that the ultrasonic honing chatter system have better stability with low spindle speed, high stiffness and damping ratio, which providing foundation to eliminate ultrasonic honing system chatter in the precision machining of cylinder liner.


Author(s):  
Jose Moreno ◽  
John Dodds ◽  
Mehdi Vahdati ◽  
Sina Stapelfeldt

Abstract Reynolds-averaged Navier-Stokes (RANS) equations are employed for aerodynamic and aeroelastic modelling in axial compressors. Their solutions are highly dependent on the turbulence models for closure. The main objective of this work is to assess the widely used Spalart-Allmaras model’s suitability for compressor flows. For this purpose, an extensive investigation of the sources of uncertainties in a high-speed multi-stage compressor rig was carried out. The grid resolution near the casing end wall, which affects the tip leakage flow and casing boundary layer, was found to have a major effect on the stability limit prediction. Refinements in this region led to a stall margin loss prediction. It was found that this loss was exclusively due to the destruction term in the SA model.


Author(s):  
Y. H. Jung ◽  
G. H. Jang ◽  
K. M. Jung ◽  
C. H. Kang ◽  
H. H. Shin

Fluid dynamic bearings (FDBs) have been applied to the spindle motor of a computer hard disk drive (HDD) because FDBs provide better dynamical characteristics of lower vibration and noise than ball bearings. However, one of the weaknesses of FBDs is the instability arising from the air bubble in oil lubricant of FDBs. Air bubbles are formed and trapped in oil lubricant by the inappropriate process of oil injection or the external shock. Trapped air bubbles decrease the rotational accuracy and the stability of a rotor-bearing system in such a way to generate non-repeatable run-out (NRRO) and to decrease the stiffness and damping coefficients of FDBs. It is important to predict the path of air bubbles in oil lubricant and to design FDBs in such a way to easily expel air bubbles out of operating FDBs.


1997 ◽  
Vol 3 (S2) ◽  
pp. 365-366
Author(s):  
M.B. Sherman ◽  
J. Brink ◽  
W. Chiu

High resolution imaging in electron cryomicroscopy of biological macromolecules is strongly affected by beam-induced charging1. Charging is often expressed in frozen or glucose-embedded specimens as an increase in apparent mass-thickness of the irradiated area. Another obvious effect of charging is blurring of both the unscattered beam and reflections in electron diffraction patterns recorded from crystalline specimens. Coating of ice-embedded specimens with a carbon layer helps to improve the stability of the ice and probably reduce charging of the specimen. Coating in a Gatan ion-beam coater (model 681) of glucose-embedded specimens with thin layers of various conductive materials did reduce charging but the specimens were damaged by the high energy ions used for the coating. In general, coating resulted in much weaker reflections in electron diffraction patterns obtained from coated crystals and faster resolution fall-off.We modified the Gatan coater by outfitting it with a new chamber that replaced the ion-beam deposition capability for thermal evaporation of carbon rods (Fig. 1).


1964 ◽  
Vol 15 (4) ◽  
pp. 328-356 ◽  
Author(s):  
W. T. Howell

SummaryThe following theoretical investigation is concerned with the stability of the flow through a system composed of a multi-stage axial flow compressor followed by a throttle.Such an investigation was carried out by Pearson and Bowmer in 1949. In 1962 Pearson’s work on the analysis of axial flow compressor characteristics, and the accumulation of empirical data regarding factors affecting the surge line, re-awakened interest in the possibility of predicting the surge line of a multi-stage axial flow compressor-throttle system.In this paper the equations governing the stability of flow at any operating point in such a system are obtained by applying Kirchhoff’s laws to the associated electric circuit at that operating point, and the analysis is applied to a wide range of flows of the calculated characteristics of a seven-stage axial flow compressor.A study of the simplest compressor-throttle system is given, in which the equations of motion of the system are derived mechanically and electrically, and the range of validity of the equations and their stability are discussed in order to bring out the relation between the mathematics and physics of the simple system before applying these methods to multi-stage axial flow compressors.For the relatively simple electrical representation used in this paper for an axial compressor of n stages, there are shown to be 2n possible values of p, the transient rotational frequency, and these are determined over a sufficiently wide range of flows on the seven-stage compressor studied.As a result, a region of the compressor characteristic map can be marked out in which all the values of the transient rotational frequency have their real parts less than zero, corresponding to stability of operation, a region where at least one of the values of p is real and positive corresponding to non-oscillatory instability of operation, and an intermediate region where some of the values of the rotational frequency p are complex with positive real part, corresponding to oscillatory instability of operation.It is suggested that the non-oscillatory instability found here is associated with the surge and the line of inception of non-oscillatory instability with the surge line.


Sign in / Sign up

Export Citation Format

Share Document