A new effective nonlinear strategy for lateral stability increment of an articulated vehicle rigid cargo

Author(s):  
Mohammad Amin Saeedi

In this paper, the effects of the most important parameters on directional dynamics of a tractor-semitrailer vehicle are examined. Initially, a three DOF dynamic model of a tractor-semitrailer vehicle is proposed. Then, the developed model is validated by means of TruckSim software during a standard maneuver. In order to analyze the system stability, the Lyapunov method has been used and the stability conditions have been extracted based on Routh criterion. The most important parameters are selected based on the articulation angle gain. Among the studied parameters, the semitrailer mass, the distance of the tractor unit center of mass and its front axle, and the tires cornering stiffness exhibited more effective behavior on the vehicle’s stability. The simulation results show that as the tractor center of mass moves toward its rear axle, the probability of the jackknifing increases. Moreover, an increment in the semitrailer mass leads to a turn of the semitrailer with respect to the tractor. Also, the understeer specification of the vehicle strengthens due to the tire cornering stiffness increment. Moreover, in order to increase the maneuverability of the articulated vehicle a new active steering controller is proposed using two different control methods. The controller is developed using the simplified dynamic model and the basis of feedback linearization method using dynamic sliding mode control method. In this system, the yaw rate and the lateral velocity of the tractor unit as well as articulation angle are studied as state variables which are targeted to track their desired references. Then, the vehicle dynamic performance is investigated during standard maneuvers. A more investigation shows that the track of the desired values of the vehicle state variables leads to eliminate off-tracking path.

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Yong Hua ◽  
Shuangyuan Wang ◽  
Bingchu Li ◽  
Guozhen Bai ◽  
Pengju Zhang

Micromirrors based on micro-electro-mechanical systems (MEMS) technology are widely employed in different areas, such as optical switching and medical scan imaging. As the key component of MEMS LiDAR, electromagnetic MEMS torsional micromirrors have the advantages of small size, a simple structure, and low energy consumption. However, MEMS micromirrors face severe disturbances due to vehicular vibrations in realistic use situations. The paper deals with the precise motion control of MEMS micromirrors, considering external vibration. A dynamic model of MEMS micromirrors, considering the coupling between vibration and torsion, is proposed. The coefficients in the dynamic model were identified using the experimental method. A feedforward sliding mode control method (FSMC) is proposed in this paper. By establishing the dynamic coupling model of electromagnetic MEMS torsional micromirrors, the proposed FSMC is evaluated considering external vibrations, and compared with conventional proportion-integral-derivative (PID) controls in terms of robustness and accuracy. The simulation experiment results indicate that the FSMC controller has certain advantages over a PID controller. This paper revealed the coupling dynamic of MEMS micromirrors, which could be used for a dynamic analysis and a control algorithm design for MEMS micromirrors.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


Author(s):  
Naser Esmaeili ◽  
Reza Kazemi ◽  
S Hamed Tabatabaei Oreh

Today, use of articulated long vehicles is surging. The advantages of using large articulated vehicles are that fewer drivers are used and fuel consumption decreases significantly. The major problem of these vehicles is inappropriate lateral performance at high speed. The articulated long vehicle discussed in this article consists of tractor and two semi-trailer units that widely used to carry goods. The main purpose of this article is to design an adaptive sliding mode controller that is resistant to changing the load of trailers and measuring the noise of the sensors. Control variables are considered as yaw rate and lateral velocity of tractor and also first and second articulation angles. These four variables are regulated by steering the axles of the articulated vehicle. In this article after developing and verifying the dynamic model, a new adaptive sliding mode controller is designed on the basis of a nonlinear model. This new adaptive sliding mode controller steers the axles of the tractor and trailers through estimation of mass and moment of inertia of the trailers to maintain the stability of the vehicle. An articulated vehicle has been exposed to a lane change maneuver based on the trailer load in three different modes (low, medium and high load) and on a dry and wet road. Simulation results demonstrate the efficiency of this controller to maintain the stability of this articulated vehicle in a low-speed steep steer and high-speed lane change maneuvers. Finally, the robustness of this controller has been shown in the presence of measurement noise of the sensors. In fact, the main innovation of this article is in the designing of an adaptive sliding mode controller, which by changing the load of the trailers, in high-speed and low-speed maneuvers and in dry and wet roads, has the best performance compared to conventional sliding mode and linear controllers.


Author(s):  
Mohammad Amin Saeedi ◽  
Reza Kazemi ◽  
Shahram Azadi

In this paper, in order to improve the roll stability of an articulated vehicle carrying a liquid, an active roll control system is utilized by employing two different control methods. First, a 16-degree-of-freedom non-linear dynamic model of an articulated vehicle is developed. Next, the dynamic interaction of the liquid cargo with the vehicle is investigated by integrating a quasi-dynamic liquid sloshing model with a tractor–semitrailer model. Initially, to improve the lateral dynamic stability of the vehicle, an active roll control system is developed using classical integral sliding-mode control. The active anti-roll bar is employed as an actuator to generate the roll moment. Next, in order to verify the classical sliding-mode control performance and to eliminate its chattering, the backstepping method and the sliding-mode control method are combined. Subsequently, backstepping sliding-mode control as a new robust control is implemented. Moreover, in order to prevent both yaw instability and jackknifing, an active steering control system is designed on the basis of a simplified three-degree-of-freedom dynamic model of an articulated vehicle carrying a liquid. In the introduced system, the yaw rate of the tractor, the lateral velocity of the tractor and the articulation angle are considered as the three state variables which are targeted in order to track their desired values. The simulation results show that the combined proposed roll control system is more successful in achieving target control and reducing the lateral load transfer ratio than is classical sliding-mode control. A more detailed investigation confirms that the designed active steering system improves both the lateral stability of the vehicle and its handling, in particular during a severe lane-change manoeuvre in which considerable instability occurs.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2243
Author(s):  
Jianchuan Guo ◽  
Chenhu Yuan ◽  
Xu Zhang ◽  
Fan Chen

This paper presents a novel visual servoing sheme for a miniature pan-tilt intertially stabilized platform (ISP). A fully customized ISP can be mounted on a miniature quadcopter to achieve stationary or moving target detection and tracking. The airborne pan-tilt ISP can effectively isolate a disturbing rotational motion of the carrier, ensuring the stabilization of the optical axis of the camera in order to obtain a clear video image. Meanwhile, the ISP guarantees that the target is always on the optical axis of the camera, so as to achieve the target detection and tracking. The vision-based tracking control design adopts a cascaded control structure based on the mathematical model, which can accurately reflect the dynamic characteristics of the ISP. The inner loop of the proposed controller employs a proportional lag compensator to improve the stability of the optical axis, and the outer loop adopts the feedback linearization-based sliding mode control method to achieve the target tracking. Numerical simulations and laboratory experiments demonstrate that the proposed controller can achieve satisfactory tracking performance.


Author(s):  
Naser Esmaeili ◽  
Reza Kazemi

Today, with the increasing growth in road traffic, many countries are welcoming long articulated vehicles because of their economic and environmental benefits and the positive effects on the problem of traffic congestion and the reduction in fuel consumption and environmental pollutants. The major problem with such vehicles is poor maneuverability at low speeds and inappropriate lateral performance at high speeds, resulting in accidents and financial losses. Therefore, in order to improve their safety, they need a control system that can improve the performance of the long articulated vehicles. In this article, a 19-degree of freedom dynamic model of the long articulated vehicle has been developed in MATLAB software. This vehicle consists of a tractor and two semi-trailer units. To adjust the articulated vehicle lateral dynamics, a robust control method based on the combination of active disturbance rejection control and back-stepping sliding mode control is introduced. Four control variables such as yaw rate and lateral velocity of the tractor and also first and second articulation angles are regulated by steering the axles of the tractor and two trailers. Furthermore, in order to measure the state variables of the long articulated vehicle, the extended Kalman filter is used. The results of the simulation in high-speed lane change and low-speed steep steer maneuvers indicate the superiority of this method over linear-quadratic regulator and sliding mode controllers. Finally, the robustness of this controller than conventional sliding mode and active disturbance rejection sliding mode controllers have been shown in the presence of noises.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dewei Zhang ◽  
Hui Qi ◽  
Xiande Wu ◽  
Yaen Xie ◽  
Jiangtao Xu

A reliable nonlinear dynamic model of the quadrotor is presented. The nonlinear dynamic model includes actuator dynamic and aerodynamic effect. Since the rotors run near a constant hovering speed, the dynamic model is simplified at hovering operating point. Based on the simplified nonlinear dynamic model, the PID controllers with feedback linearization and feedforward control are proposed using the backstepping method. These controllers are used to control both the attitude and position of the quadrotor. A fully custom quadrotor is developed to verify the correctness of the dynamic model and control algorithms. The attitude of the quadrotor is measured by inertia measurement unit (IMU). The position of the quadrotor in a GPS-denied environment, especially indoor environment, is estimated from the downward camera and ultrasonic sensor measurements. The validity and effectiveness of the proposed dynamic model and control algorithms are demonstrated by experimental results. It is shown that the vehicle achieves robust vision-based hovering and moving target tracking control.


Author(s):  
Saeed Shojaei ◽  
Ali Rahmani Hanzaki ◽  
Shahram Azadi ◽  
Mohammad Amin Saeedi

In this paper, a new decision-making algorithm for double lane change maneuver of an articulated vehicle in real dynamic circumstances is studied. A novel method for determining the decision conditions is used based on the articulated vehicle kinematics and dynamics. Through this method, several points of the articulated vehicle are considered in various situations when conducting double lane change maneuver, and the critical points are determined. A new realistic dynamic method is used based on a 16-degrees of freedom dynamic model of the articulated vehicle. The sliding mode control method is utilized to increase the method efficiency. Therefore, the least safe time to perform the double lane change maneuver is extracted based on the sliding mode control method as tracking control. A new Articulated Vehicle Least safe time formulation is determined for dynamic circumstances. Based on the results of simulated test, the acceptable time range is also established for conducting the lane change maneuver. The lane change maneuver is generalized to the double lane change maneuver. Decision-making algorithm is introduced based on real traffic situations. The dynamic approach and the decision-making algorithm are verified. Results show the validity of the reflected method meaning that the decision-making algorithm is acceptable.


Author(s):  
Mohammad Amin Saeedi ◽  
Reza Kazemi ◽  
Shahram Azadi

In this paper to improve manoeuvrability and jackknifing prevention, as well as increasing rollover stability of an articulated vehicle carrying liquid, a new control system coupled with an active roll control system and an active steering control system is presented. First, a 16-degrees-of-freedom nonlinear dynamic model of an articulated vehicle is developed. Next, the dynamic interaction of the liquid cargo with the vehicle is investigated by integrating a quasi-static liquid sloshing model with a tractor semi-trailer model. Initially, to improve the roll stability of the vehicle, an active roll control system is presented. The active anti-roll bar is employed as an actuator to generate the roll moment. Furthermore, the manoeuvrability increment and jackknifing prevention are targeted using the active steering control system. The main purpose of using the active steering controller is to track the desired values of tractor yaw rate, articulation angle and tractor lateral velocity in different roads, various filled volumes and different speeds. The active steering control system is designed based on a three-degrees-of-freedom dynamic model of the articulated vehicle carrying liquid and on the basis of sliding mode control. Simulation results confirmed robust performance of the control system for different filled volumes, especially during the critical manoeuvre. Further studies show that the tracking of the desired articulation angle has not only eliminated the off-tracking path, but also has made the semi-trailer rear end follow the fifth wheel path.


2011 ◽  
Vol 460-461 ◽  
pp. 827-830 ◽  
Author(s):  
Jing Feng Mao ◽  
Ai Hua Wu ◽  
Guo Qing Wu ◽  
Xu Dong Zhang

In order to eliminate the chattering phenomena caused by conventional sliding mode control (SMC) method in magnetic bearing system control, this paper proposes a variable rate reaching law approach based sliding mode controller to achieve higher system stability and robustness. In this control law, system states’ normal numbers are brought in to automatic adjust the gain of the switching control part of SMC. The controller output amplitude of chattering can be progressively damped, and the system will converge to zero asymptotically. The system stability is proved by Laypunov theory, and the prerequisite of control law parameters design is deduced out. Simulation results show that the proposed SMC control method has effectiveness in dynamic suspension position tracking performance and obtaining system robustness.


Sign in / Sign up

Export Citation Format

Share Document