Aerodynamic instabilities modeling under asymmetric boundary in a centrifugal compressor for turbocharger

Author(s):  
Chenxing Hu ◽  
Xue Li ◽  
Siyu Zheng

The increasing demand for compression systems with high pressure ratio and wide safety margin has set new prerequisites for designers to meet the industrial needs without increasing the manufacturing costs excessively. In this work, the turbulent stability of the vaneless diffuser of the centrifugal compressor was analyzed. Unsteady Reynolds-averaged numerical simulations of the isolated diffuser and full annular diffuser with or without circumferential asymmetric boundary conditions downstream were performed. And a continuous adjoint approach was adopted, which is rarely applied in the stability analysis of compressor flow. Then, the origin of instability under different inflow and outflow conditions was sought with a sensitivity analysis. The prediction of the growth rate reveals that the flow near the shroud dominates the global stability of the diffuser. When connected with an impeller in the upstream direction, the most unstable region is localized at the backflow regions near the outlet. The wave number, however, is altered under the impact of the jet-wake flow. When connected to a circumferential asymmetric condition, the structural sensitivity of the vaneless diffuser with a radius ratio of 1.53 indicates that the interaction between the inlet reverse flow and outlet backflow is responsible for the occurrence of stall. The most unstable regions are localized at the region 90°–135° away from the volute tongue. The present work mainly contributes to the instabilities identification with novel sensitivity methods under asymmetric boundary conditions.

Author(s):  
A. Whitfield ◽  
F. J. Wallace ◽  
R. C. Atkey

Two variable geometry techniques have been applied to a small turbocharger compressor, with the objective of trying to move the peak pressure ratio operating point to lower flow rates, thereby yielding a broad flow range map. Variable prewhirl guide vanes and variable vaneless diffuser passage height have been studied separately. The results obtained with both techniques are compared and the relative merits and demerits with respect to improved flow range and isentropic efficiency penalties are considered.


Author(s):  
R. S. Benson ◽  
A. Whitfield

This paper deals with a theoretical approach to study the non-steady flow and wave action in a centrifugal impeller and vaneless diffuser, and also to predict the non-steady flow performance of a centrifugal compressor. This was carried out by replacing the compressor unit by a model which consisted of a simplified rotating duct, a vaneless diffuser, and a cone-shaped pipe which replaced the scroll. A theoretical technique using the method of characteristics and the development of the non-steady flow equations to a rotating duct and radial diffuser is given. The development of the theory and the difficulties encountered are described. In particular, the techniques developed for starting a computer calculation are described. In order to maintain homentropic flow in the impeller and diffuser all losses were assumed to occur at the impeller inlet. A pressure loss boundary condition was developed to enable the steady pressure ratio-mass flow characteristics to be computed. When these values agreed with the experimentally determined characteristics, the boundary condition at the rotor inlet was such that the pressure loss terms allowed for the impeller and diffuser losses. The theoretical results obtained are compared with corresponding experimental results, and the possibility of using this theoretical technique as a design tool is discussed.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Stefan Ubben ◽  
Reinhard Niehuis

Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. In Part I it was shown that an one-sided diffuser clearance is able to contribute to an increase in flow range, stall margin, pressure ratio, and efficiency. In order to reveal the relevant flow phenomena, in Part II the results of detailed measurements of the pressure distribution at diffuser exit and particle image velocimetry (PIV) measurements inside the diffuser channel performed at three clearance configurations and three diffuser angles at a fixed radial gap are discussed. It was found that, for defined diffuser configurations, the clearance flow amplifies the diffuser throat vortex capable to reduce the loading of the highly loaded vane pressure side and to support a more homogenous diffuser flow. It turned out that the co-action of the geometry parameter diffuser vane angle and diffuser clearance height is of particular importance. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Stefan Ubben ◽  
Reinhard Niehuis

Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. Compressor map measurements provide a summary of the operating behavior related to diffuser geometry and impeller speed, whereas detailed flow measurements with temperature and pressure probes allow a breakdown of the losses between impeller and diffuser and contribute to a better understanding of relevant flow phenomena. The results presented in Part I show that an one-sided diffuser clearance does not necessarily has a negative impact on the operation and loss behavior of the centrifugal compressor, but instead may contribute to an increased pressure ratio and improved efficiency as long as the diffuser passage is broad enough with respect to the clearance height. The flow phenomena responsible for this detected performance behavior are exposed in Part II, where the results of detailed measurements with pressure probes at diffuser exit and particle image velocimetry (PIV) measurements conducted inside the diffuser channel are discussed. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”


Author(s):  
Giorgio Pavesi ◽  
Guido Ardizzon ◽  
Giovanna Cavazzini

To improve understanding of the phenomena of stall in centrifugal pumps, extensive research was conducted to investigate the impact on flow field instabilities and the noise generated in a pump equipped with a diffuser. A pump fitted with a vaneless diffuser and a return channel was used as the test model. Flow velocity was measured at the pump and at diffuser inflow to establish a link between the flow field structure and acoustic radiation. Activity was based upon the cross spectral analysis of output signals from piezoelectric transducers placed flush with the wall at the inflow and outflow of the pump, and 3D fully-viscous unsteady computations. Results showed the jet-wake flow pattern induced an unstable vortex, which influenced flow discharging from the adjacent passage and destabilised jet-wake flow in the passage. Consequently, periodic fluctuations were seen at impeller discharge which were found to be coherent from blade to blade and possessed a rich harmonic content. With the exception of the total pressure in the far field, the pressure frequency scattering by the pump was found to be consistent when compared to the experimental and analytic results.


2004 ◽  
Vol 126 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Hirotaka Higashimori ◽  
Kiyoshi Hasagawa ◽  
Kunio Sumida ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high efficiency and high pressure ratio compressors. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow distortion due to the shock wave and the shock boundary layer interaction must have a large effect on the flow in the inducer. In order to ensure the reliability of aerodynamic design technology, the actual supersonic flow phenomena with a shock wave must be ascertained using measurement and Computational Fluid Dynamics (CFD). This report presents the measured results of the high transonic flow at the impeller inlet using Laser Doppler Velocimeter (LDV) and verification of CFD, with respect to the high transonic flow velocity distribution, pressure distribution, and shock boundary layer interaction at the inducer. The impeller inlet tangential velocity is about 460 m/s and the relative Mach number reaches about 1.6. Using a LDV, about 500 m/s relative velocity was measured preceding a steep deceleration of velocity. The following steep deceleration of velocity at the middle of blade pitch clarified the cause as being the pressure rise of a shock wave, through comparison with CFD as well as comparison with the pressure distribution measured using a high frequency pressure transducer. Furthermore, a reverse flow is measured in the vicinity of casing surface. It was clarified by comparison with CFD that the reverse flow is caused by the shock-boundary layer interaction. Generally CFD shows good agreement with the measured velocity distribution at the inducer and splitter inlet, except in the vicinity of the casing surface.


1990 ◽  
Vol 112 (1) ◽  
pp. 25-29 ◽  
Author(s):  
H. Hayami ◽  
Y. Senoo ◽  
K. Utsunomiya

Low-solidity circular cascades, conformally transformed from high-stagger linear cascades of double-circular-arc vanes with solidity 0.69, were used as a part of the diffuser system of a transonic centrifugal compressor. Performance test results were compared with data of the same compressor with a vaneless diffuser. Good compressor performance and a wider flow range as well as a higher pressure ratio and a higher efficiency, superior to those with a vaneless diffuser, where the flow range was limited by choke of the impeller, were demonstrated. The test circular cascade diffusers demonstrated a good pressure recovery over a wide range of flow angles, even when the inflow Mach number to the cascade was over unity.


2005 ◽  
Author(s):  
Victor I. Mileshin ◽  
Igor A. Brailko ◽  
Andrew N. Startsev ◽  
Igor K. Orekhov

Present paper is devoted to numerical investigation of unsteadiness caused by impeller-diffuser interaction in a 8:1 total pressure ratio centrifugal compressor. The compressor designed by CIAM [7], and manufactured and tested by Customer gave satisfactory performances even under the first test. Further development requires new insights and advanced numerical tools. In this context, this paper presents Navier-Stokes computations of 3D viscous unsteady flow field within the impeller-diffuser configuration. Steady and unsteady computations indicated spacious zone of low velocity / reverse flow on pressure surface of the diffuser vane. To suppress this reverse flow, new vaned diffuser has been tailored through application of 3D inverse design procedure for Navier-Stokes equations [8]. Subsequent steady and unsteady N-S calculations performed for compressor with the new diffuser demonstrated depression of reverse flow within diffuser and different unsteady loading of the diffuser vane.


1975 ◽  
Vol 97 (3) ◽  
pp. 337-345 ◽  
Author(s):  
D. Eckardt

One of the critical problems in centrifugal compressor design is the diffuser-impeller interaction. Up to now, theoretical models, which describe one of the salient features of this problem, the impeller discharge mixing process, appear to be proved experimentally only at low tip speeds. In the present study investigations on this subject were accomplished in the vaneless diffuser of a low-pressure ratio centrifugal compressor, running at tip speeds of 300 m/s. Detailed, instantaneous measurements in the impeller discharge mixing zone were performed by high-frequency measuring systems. Relative velocity distributions at the exit of impeller blade channels show pronounced jet/wake-patterns. The radial extension of flow distortions in the vaneless diffuser entry region, caused by rotating wakes, reached up to higher radius ratios than predicted by theoretical models.


1988 ◽  
Vol 110 (1) ◽  
pp. 129-137 ◽  
Author(s):  
U. Haupt ◽  
M. Rautenberg ◽  
A. N. Abdel-Hamid

The mechanism of blade excitation during the operation of a high-mass-flow, high-pressure-ratio centrifugal compressor has been investigated. This was carried out in the compressor operating range below 60 percent of design speed and in the zone of unsteady flow occurrence, where considerable blade vibration has been measured but no periodic unsteady pressure pattern such as rotating stall could be identified. Experiments conducted to study the mechanism of interactions between flow and blades were accomplished using several measuring methods simultaneously, such as measurements of blade vibration, flow angle at impeller inlet, unsteady pressure at different meridional and peripheral locations, as well as flow visualization by means of oil pattern. Analysis of the measurements showed typical broad-band characteristics of the unsteady pressure field and also for the blade vibration behavior. Results of flow angle investigations at the impeller inlet together with the analysis of oil pattern show that the broad-band pressure fluctuations and blade excitation can be attributed to a strong reverse flow near the suction side of the radial blade in the shroud zone. This reverse flow has its source downstream of the impeller and is extending back up to a location ahead of the impeller inlet. Similar results were obtained when the compressor was operated with vaneless and vaned diffuser configurations.


Sign in / Sign up

Export Citation Format

Share Document