Joint strength of gasketed bolted pipe flange joint under combined internal pressure plus axial load with different (industrial and ASME) bolt-up strategy

Author(s):  
Niaz B Khan ◽  
Muhammad Abid ◽  
Mohammed Jameel ◽  
Hafiz Abdul Wajid

Gasketed bolted flange joints are used in process industry for connecting pressure vessels and pipes. Design procedures available in the literature mostly discuss structural strength, while sealing failure is still a big concern in industries. Similarly, limited work is found in the literature regarding performance of gasketed bolted joints under combined loading. A detailed 3D nonlinear finite element analysis is performed to study the strength and sealing of a gasketed bolted flanged pipe joint under different bolt-up strategy (Industrial and ASME) and under combined internal pressure and axial loading.

Author(s):  
Muhammad Abid ◽  
Abdul W. Awan

A number of analytical and experimental studies have been conducted to study ‘strength’ and ‘sealing capability’ of bolted flange joint only under internal pressure loading. Due to the ignorance of the external i.e. axial loading, the optimized performance of the bolted flange joint can not be achieved. A very limited work is found in literature under combined internal pressure and axial loading. In addition, the present design codes do not address the effects of axial loading on the structural integrity and sealing ability of the flange joints. From previous studies, non-gasketed joint is claimed to have better performance as compared to conventional gasketed joint. To investigate non-gasketed joint’s performance i.e. joint strength and sealing capability under combined internal pressure and any applied external loading, an extensive 3D nonlinear finite element analysis is carried out and overall joint performance and behavior is discussed.


2011 ◽  
Vol 341-342 ◽  
pp. 416-420 ◽  
Author(s):  
Mahdi Maarefdoust ◽  
Pooria Akbarzade

Limit load analysis of defect free thick walled pipes and cylinders subjected to internal pressure and combined internal pressure and axial loading is commonly performed as part of integrity assessment procedures for transmission pipelines and pressure vessels across the industry. Moreover the potential impact of environmental assisted or accidental damage that result in creation of surface defects and consequently affects the ability of vessel to withstand the applied loading conditions. This paper attempts to demonstrate the effect of surface defects on the limit load of cylinders by use of finite element method. ABAQUS software has been used for FE analysis and modeling. Approximate analytical solutions for benchmark model have been used for validation/verification of numerical results.


Author(s):  
Muhammad Abid ◽  
Niaz Bahadur Khan

Performance of a bolted flange joint is characterized mainly due to its ‘strength’ and ‘sealing capability’. A number of numerical and experimental studies have been conducted to study these characteristics mostly under internal pressure loading. A very limited work is found in literature under combined internal pressure and axial loading. Due to the ignorance of this external (i.e. axial) loading, the optimized performance of the bolted flange joint cannot be achieved. The present design codes do not address the effects of axial loading on the structural integrity and sealing ability. To investigate, joint strength and sealing capability under combined loading, extensive numerical study of a gasketed flange joint is carried out. Actual joint load capacity is determined under both the design and proof test pressure with maximum additional external axial loading that can be applied for safe joint performance. Numerical results are compared with the available experimental results and overall joint performance and behavior is discussed in detail.


Author(s):  
Muhammad Abid ◽  
Javed A. Chattha ◽  
Kamran A. Khan

Performance of a bolted flange joint is characterized mainly by its ‘strength’ and ‘sealing capability’. A number of analytical and experimental studies have been conducted to study these characteristics only under internal pressure loading. In the available published work, thermal behavior of the pipe flange joints is discussed under steady state loading with and without internal pressure and under transient loading condition without internal pressure. The present design codes also do not address the effects of steady state and thermal transient loading on the structural integrity and sealing ability. It is realized that due to the ignorance of any applied transient thermal loading, the optimized performance of the bolted flange joint can not be achieved. In this paper, in order to investigate gasketed joint’s performance i.e. joint strength and sealing capability under combined internal pressure and transient thermal loading, an extensive nonlinear finite element analysis is carried out and its behavior is discussed.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


Author(s):  
Linbo Zhu ◽  
Abdel-Hakim Bouzid ◽  
Jun Hong

Abstract Bolted flange joints are the most complex structural components of pressure vessels and piping equipment. Their assembly is a delicate task that determines their successful operation during the service life. During bolt tightening, it is very difficult to achieve uniformity of the target bolt preload due to elastic interaction and criss-cross talk. The risk of leakage failure under service loading is consequently increased because of the scatter of the bolt preload. In previous work, an analytical model based on the theory of circular beams on linear elastic foundation was proposed to predict the bolt tension change due to elastic interaction. Based on this model, this paper presents a novel methodology for the optimization of the tightening sequence. The target preload and the load to be applied to each bolt in each pass can be calculated to achieve uniform final preload and avoid bolt tension reaching yield under a number of specified tightening passes. The validity of the approach is supported by experimental tests conducted on a NPS 4 class 900 welding neck flange joint and by finite element analysis on this bolted joint using the criss-cross tightening and sequential patterns. This study provides guidelines for bolted flange joints assembly and enhances its safety and reliability by minimizing bolt tension scatter due to elastic interaction.


1996 ◽  
Vol 118 (4) ◽  
pp. 429-433
Author(s):  
H. Chen ◽  
J. Jin ◽  
J. Yu

Results from finite element analysis were used to show that the stress index kσ and the nondimensionalized highly stressed hub length kh of a flat head with a round corner in a pressure vessel subjected to internal pressure are functions of three dimensionless parameters: λ ≡ h/dt, η ≡ t/d, and ρ ≡ r/t. Approximate formulas for estimating kσ and kh from λ, η, and ρ p are given. The formulas can be used for determining a suitable fillet radius for a flat head in order to reduce the fabricating cost and to keep the stress intensity at the fillet under an acceptable limit.


Author(s):  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Nobuhisa Suzuki ◽  
Ryuji Muraoka ◽  
Takekazu Arakawa

This paper presents the results of experimental and finite element analysis (FEA) studies focused on the tensile strain capacity of X80 pipelines under large axial loading with high internal pressure. Full-pipe tensile test of girth welded joint was performed using high-strain X80 linepipes. Curved wide plate (CWP) tests were also conducted to verify the strain capacity under a condition of no internal pressure. The influence of internal pressure was clearly observed in the strain capacity. Critical tensile strain is reduced drastically due to the increased crack driving force under high internal pressure. In addition, SENT tests with shallow notch specimens were conducted in order to obtain a tearing resistance curve for the simulated HAZ of X80 material. Crack driving force curves were obtained by a series of FEA, and the critical global strain of pressurized pipes was predicted to verify the strain capacity of X80 welded linepipes with surface defects. Predicted strain showed good agreement with the experimental results.


2016 ◽  
Vol 17 (2) ◽  
pp. 137-155
Author(s):  
Muhammad Abid

Gasketed bolted flange joints are the most critical components in pipelines for their sealing and strength under operating conditions. Most of the work available in literature is under static loading, whereas in industry, cyclic loads are applied due to the vibrating machinery such as motors, pumps, sloshing in offshore applications and in the ships etc. In this study a three dimensional finite element analysis of a gasketed joint is carried out using a spiral wound gasket under bolt up and dynamic operating conditions (internal pressure, axial and bending) singly and in combination. The cyclic axial loads are concluded relatively more challenging for both the sealing and strength of the joint. Higher magnitudes of loads and frequencies are also observed more challenging to the joints performance.


Author(s):  
Celal Cakiroglu ◽  
Amin Komeili ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
Millan Sen

The cold bend pipelines may be affected by the geotechnical movements due to unstable slopes, soil type and seismic activities. An extensive experimental study was conducted by Sen et al. in 2006 to understand the buckling behaviour of cold bend pipes. In their experiments, it was noted that one high pressure X65 pipe specimen failed under axial and bending loads due to pipe body tensile side fracture which occurred after the development of a wrinkle. The behaviour of this cold bend pipe specimen under bending load has been investigated numerically to understand the conditions leading to pipe body tension side fracture following the compression side buckling. Bending load has been applied on a finite element model of the cold bend by increasing the curvature of it according to the experimental studies conducted by Sen [1]. The bending loads have been applied on the model with and without internal pressure. The distribution of the plastic strains and von Mises stresses as well as the load–displacement response of the pipe have been compared for both load cases. In this way the experimental results obtained by Sen [1] have been verified. The visualization of the finite element analysis results showed that pipe body failure at the tension side of the cold bend takes place under equal bending loads only in case of combined loading with internal pressure.


Sign in / Sign up

Export Citation Format

Share Document