Two-phase natural circulation loop behaviour at atmospheric and subatmospheric conditions

Author(s):  
S Venkata Sai Sudheer ◽  
K Kiran Kumar ◽  
Karthik Balasubramanian

This paper aims to present the steady-state behaviour of two-phase natural circulation loop at atmospheric and sub-atmospheric conditions. One-dimensional numerical approach is adopted to evaluate various system parameters, with special emphasis on spatial variation of thermo-physical properties and flashing. Homogeneous equilibrium model is applied for two-phase flows. An in-house code is developed in MATLAB to solve numerical model iteratively. It is observed that consideration of spatial variation of thermo-physical properties can precisely predict the loop behaviour. The evaluated results are validated with the open literature and reasonably good agreement is observed. The heater inlet temperature, inlet pressure and heat flux are found to have significant influence on spatial variation of pressure, temperature and enthalpy. As system pressure decreases from atmospheric to sub-atmospheric (1–0.8 atm), it is observed that the sub-atmospheric loop gives a higher mass flow rate compared to atmospheric loop at lower heat fluxes. However, as the heat flux increases in the sub-atmospheric loop, the mass flow rate is reduced due to increased drag force in the loop.

Author(s):  
Dan Huang ◽  
Wei Li ◽  
Wei Zhang ◽  
Guo-Qiang Xu ◽  
Zhi Tao

A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented. In the experiments, insights are offered on the effects of the factors such as mass flow rate, heat flux and pressure. It is found that increasing the mass flow rate could enhance the heat transfer performances, while increasing the working pressure will deteriorate the heat transfer. Besides, the effect of heat flux on heat transfer is complicated. Based on the analysis of experimental data, enhancement of heat transfer occurs when the inner wall temperature of tube is higher than pseudo-critical temperature while the bulk fluid temperature is lower than the pseudo-critical temperature. At the supercritical conditions, heat transfer is influenced by the significant changes in thermo-physical properties, thus accurate evaluations of the thermo-physical properties become the key for the supercritical heat transfer calculations. The extended corresponding-state principle could be used for evaluating the density and the transport properties of kerosene, including its viscosity and thermal conductivity, at different temperatures and pressures. In order to obtain the numerical values of the heat capacity, a Soave–Redlich–Kwong (SRK) equation of state is used. The correlation for predicting heat transfer in kerosene at supercritical pressure is established, the calculation results from this correlation are in good agreement with the experimental results.


2011 ◽  
Vol 110-116 ◽  
pp. 3657-3662
Author(s):  
S. Alikhani ◽  
A. Behzadmehr ◽  
S. Mirmasoumi

Fully developed laminar mixed convection of a nanofluid (water/Al2O3) in a horizontal curved tube is numerically investigated. Three-dimensional elliptic governing equations have been solved to show how nanoparticle concentration affects on thermal and hydrodynamic parameters while these parameters are impressed by centrifugal and buoyancy forces under constant mass flow rate and heat flux. Comparisons with previously published experimental works on horizontal curved tubes show good agreements between the results. Results which are obtained using the two – phase mixture model indicate that adding the nanoparticles causes changes in the properties of nanofluid and finally increases the temperature of the flow. Furthermore, increasing nanoparticles volume fraction at first augments the heat transfer coefficient of nanofluid and then, for higher concentration of particles, decreases this thermal parameter of nanofluid.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yufeng Lv ◽  
Xingmin Liu ◽  
Weihan Li ◽  
Chunqiu Guo ◽  
Zhiwei Zhou

Motivated by the significant natural circulation capability of lead–bismuth eutectic (LBE)–cooled systems, the RELAP5 MOD3.2 code was modified for the analysis of LBE-cooled reactors and non-nuclear systems. The thermo-physical properties of LBE have been incorporated into the code without affecting the code’s original performance; new heat transfer correlations for liquid metal have been implemented. For the purpose of validating the modified code, experimental results of two different LBE natural circulation test loops were compared with the code simulation results. The first one was a natural circulation setup process test at a power of 22.5 kW performed at the Natural Circulation Experimental (NACIE) facility. The simulated inlet and outlet LBE temperatures across the heat source and mass flow rate of LBE agreed well with the test data. The second one was natural circulation conditions under five different power levels conducted at the Natural Circulation Capability Loop (NCCL) facility. The LBE temperature difference and mass flow rate under different power levels predicted by the code were consistent with the experimental data. Generally speaking, the modified code gives acceptable results, and the code could be applied for further LBE systems thermal-hydraulic analysis.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Mayaram Sahu ◽  
Jahar Sarkar

Energy and exergy performances of natural circulation loop (NCL) with various water-based hybrid nanofluids (Al2O3 + TiO2, Al2O3 + CNT, Al2O3 + Ag, Al2O3 + Cu, Al2O3 + CuO, Al2O3 + graphene) with 1% volumetric concentration are compared in this study. New thermophysical property models have been proposed for hybrid nanofluids with different particle shapes and mixture ratio. Effects of power input, loop diameter, loop height, loop inclination and heater/cooler inclination on steady-state mass flow rate, effectiveness, and entropy generation are discussed as well. Results show that both the steady-state mass flow rate and energy–exergy performance are enhanced by using the hybrid nanofluids, except Al2O3 + graphene, which shows the performance decrement within the studied power range. Al2O3 + Ag hybrid nanofluid shows highest enhancement in mass flow rate of 4.8% compared to water. The shape of nanoparticle has shown a significant effect on steady-state performance; hybrid nanofluid having cylindrical and platelet shape nanoparticles yields lower mass flow rate than that of spherical shape. Mass flow rate increases with the increasing loop diameter and height, whereas decreases with the increasing loop and heater/cooler inclinations. Both effectiveness and entropy generation increase with the decreasing loop diameter and height, whereas increasing the loop and heater/cooler inclinations. This study reveals that the particle shape has a significant effect on the performance of hybrid nanofluids in NCL, and the use of hybrid nanofluid is more effective for higher power.


2011 ◽  
Vol 110-116 ◽  
pp. 3650-3656
Author(s):  
S. Mirmasoumi ◽  
A. Behzadmehr

How nanoparticle concentration affects on thermal and hydrodynamic parameters of a nanofluid (water+Al2O3) is numerically investigated in a horizontal tube while these parameters are impressed by buoyancy force under constant heat flux and mass flow rate. Comparisons with previously published experimental and numerical works on mixed convection in horizontal tubes show good agreements between the results. Results which are obtained using the two – phase mixture model indicate that adding the nanoparticles causes changes in the properties of nanofluid and finally increases the temperature of the flow. Whereas, dimensionless pressure drop along the tube length could increase with the nanoparticle concentration.


Author(s):  
Jinsong Zhang ◽  
Jason Hugenroth ◽  
Issam Mudawar ◽  
Timothy S. Fisher

A closed loop two-phase thermosyphon has been modeled based on earlier experimental and numerical studies by Mukherjee and Mudawar [1, 2]. Unlike conventional thermosyphons in which the heat dissipating device is submerged in a pool of liquid coolant, the current system uses a flow boiling arrangement. The advantage is that for a given boiling surface area, the critical heat flux (CHF) can be increased. Parametric studies with respect to adiabatic section flow areas, boiler section flow area, and system height were performed. The maximum practical heat flux that is attainable is predicted, as well as other flow parameters such as mass flow rate, flow velocities and fluid quality existing the boiler. Performance enhancements relative to the original system, may be possible by introducing a divergent cross sectional area in the boiler section that increases the system mass flow rate. It can also, however, reduce the flow velocity in certain sections of the boiler, tending to reduce the boiler CHF. Experimental studies are recommended to determine if an actual improvement can be realized.


Author(s):  
Ramesh Babu Bejjam ◽  
K. Kiran Kumar ◽  
Karthik Balasubramanian

The main objective of the present study is to carry out experimental investigation on thermal performance of the nanofluid-based rectangular natural circulation loop (NCL). For this study, an experimental test rig is fabricated with heater as heat source, and tube in tube heat exchanger as heat sink. For the experimentation, three different nanofluids are used as working fluids. The nanometer-sized particles of silicon dioxide (SiO2), copper oxide (CuO), and alumina (Al2O3) are dispersed in distilled water to produce the nanofluids at different volume concentrations ranging from 0.5% to 1.5%. Experiments are carried out at different power inputs and different cold fluid inlet temperatures. The results indicate that NCL operating with nanofluid reaches steady-state condition quickly, when compared to water due to its increased thermal conductivity. The steady-state reaching time is reduced by 12–27% by using different nanofluids as working fluids in the loop when compared to water. The thermal performance parameters like mass flow rate, Rayleigh number, and average Nusselt number of the nanofluid-based NCL are improved by 10.95%, 16.64%, and 8.10%, respectively, when compared with water-based NCL. At a given power input, CuO–water nanofluid possess higher mass flow rate, Rayleigh number and Nusselt number than SiO2–water and Al2O3–water nanofluids due to better thermo-rheological properties.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


Author(s):  
Assunta Andreozzi ◽  
Vincenzo Naso ◽  
Oronzio Manca

In this study a numerical investigation of mixed convection in air in horizontal parallel walled channels with moving lower plate is carried out. The moving lower plate has a constant velocity and it is adiabatic, whereas the upper one is heated at uniform heat flux. The effects of horizontal channel height, heat flux and moving plate velocity are analyzed. Results in terms of temperature and stream function fields are given and the mass flow rate per unit of length and divided by the dynamic viscosity is reported as a function of Reynolds number based on the moving plate velocity. For stationary condition of lower plate, a typical C–loop inside the horizontal channel is detected. Different flow motions are observed in the channel and the two reservoirs, depending on the heat flux values and the distance between the heated upper stationary plate and lower adiabatic moving plate. The dimensionless induced mass flow rate presents different increase between the Reynolds number lower or greater than 1000.


Sign in / Sign up

Export Citation Format

Share Document