scholarly journals Impact and internal pressure failure of E-glass and S-glass epoxy composite elbow pipe joints influenced by sea water

Author(s):  
Sujith Bobba ◽  
Z Leman ◽  
ES Zainuddin ◽  
SM Sapuan

Consequences of sea water absorption on the impact behaviour of glass/epoxy composite elbow pipe joints were experimentally investigated. Glass-epoxy elbow pipe joints using E-glass and S-glass were fabricated via the hand layup method. The pipe joints were immersed in water as per the current conditions for 0, 3 and 6 months. The relation between the unaged and aged samples was studied by calculating the contact force, displacement and absorbed energy values from the impact tests. Therefore, it is concluded that sea water raised the ageing period of both E-glass/epoxy and S-glass/epoxy fibre-reinforced composite elbow pipe joints which resulted in the degradation between the fibre and resin interface and which was prominent in the elbow joints fabricated with E-glass rather than the one’s fabricated with the proposed S-glass fibre.

2017 ◽  
Vol 36 (3) ◽  
pp. 782-787
Author(s):  
O Adekomaya ◽  
K Adama

The primary objective of this research work is to analyse the effect of fibre loading and orientation on the tensile and impact strength of the polymeric composite materials. Fibre reinforced composite materials have been reported to have attracted many applications in view of its low weight and superior strength when compared with the metal matrix composite. While researches have established the weight reduction of fibre reinforced polymer material, few works have reported the impact of orientation on the manufacturing of polymer composite. In this study, series of experimental works were done to demonstrate the manufacturing of glass-fibre reinforced epoxy resin with special attention on the influence of oriented reinforced composite material. The composites were manufactured using hand-lay technique with three different fibre loadings (10, 20, and 30 wt. %) and at two different fibre orientations (30o and 60o). Key of the finding drawn from this research form the basis of discussion and, composite with 60o fibre orientation showed better tensile strength when compared with the neat resin and other oriented (G10E30) fibre reinforced composite. Similar observations were also noticed on the impact strength of these composites which signify the improved mechanical properties of oriented reinforced composite materials. http://dx.doi.org/10.4314/njt.v36i3.17


2020 ◽  
pp. 096739112098275
Author(s):  
A Shahbazi ◽  
A Zeinedini

In this paper, the impact response of bi-directional corrugated core sandwich structures was investigated. The core and skins were made of E-glass/epoxy laminated composites. Additive manufacturing technology was used to print the molds applied to fabricate the cores. The influence of different periods, i.e. T = 30, 37.5, 50 and 75 mm, of the double-cosine corrugated core on the impact response of the panels was evaluated. In addition, some other panels with regular corrugated cores were manufactured to evaluate the impact response of the bi-directional corrugated core structures. A finite element modeling was also carried out to analyze the impact behavior of the samples. The empirical measurements and the numerical predictions showed that the panels with the bi-directional corrugated core have a significant improvement in the absorbed energy under impact loading at each given period. It was also manifested that the panel consisting of the bi-directional corrugated core with T = 37.5 mm has the highest specific energy absorption.


2021 ◽  
pp. 109963622199387
Author(s):  
Mathilde Jean-St-Laurent ◽  
Marie-Laure Dano ◽  
Marie-Josée Potvin

The effect of extreme cold temperatures on the quasi-static indentation and the low velocity impact behavior of woven carbon/epoxy composite sandwich panels with Nomex honeycomb core was investigated. Impact tests were performed at room temperature, –70°C, and –150°C. Two sizes of hemispherical impactor were used combined to three different impactor masses. All the impact tests were performed at the same initial impact velocity. The effect of temperature on the impact behavior is investigated by studying the load history, load-displacement curves and transmitted energy as a function of time curves. Impact damage induced at various temperatures was studied using different non-destructive and destructive techniques. Globally, more damages are induced with impact temperature decreasing. The results also show that the effect of temperature on the impact behavior is function of the impactor size.


Author(s):  
Fatemeh Alizadeh ◽  
Navid Kharghani ◽  
Carlos Guedes Soares

Glass/Vinylester composite laminates are comprehensively characterised to assess its impact response behaviour under moisture exposure in marine structures. An instrumented drop weight impact machine is utilised to determine the impact responses of dry and immersed specimens in normal, salted and sea water. The specimens, which had three different thicknesses, were subjected to water exposure for a very long period of over 20 months before tested in a low-velocity impact experiment. Water uptake was measured primarily to study the degradation profiles of GRP laminates after being permeated by water. Matrix dissolution and interfacial damage observed on the laminates after prolonged moisture exposure while the absorption behaviour was found typically non-Fickian. The weight of the composite plates firstly increased because of water diffusion up to month 15 and then decreased due to matrix degradation. The specimens with 3, 6 and 9 mm thickness exhibited maximum water absorption corresponding to 2.6%, 0.7% and 0.5% weight gain, respectively. In general, the results indicated that water uptake and impact properties were affected by thickness and less by water type. Impact properties of prolonged immersed specimens reduced remarkably, and intense failure modes detected almost in all cases. The least sensitive to impact damage were wet specimens with 9 mm thickness as they indicated similar maximum load and absorbed energy for different impact energies.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2015 ◽  
Vol 825-826 ◽  
pp. 369-376 ◽  
Author(s):  
Robert Prussak ◽  
Daniel Stefaniak ◽  
Christian Hühne ◽  
Michael Sinapius

This paper focuses on the reduction of process-related thermal residual stress in fiber metal laminates and its impact on the mechanical properties. Different modifications during fabrication of co-cure bonded steel/carbon epoxy composite hybrid structures were investigated. Specific examinations are conducted on UD-CFRP-Steel specimens, modifying temperature, pressure or using a thermal expansion clamp during manufacturing. The impact of these parameters is then measured on the deflection of asymmetrical specimens or due yield-strength measurements of symmetrical specimens. The tensile strength is recorded to investigate the effect of thermal residual stress on the mechanical properties. Impact tests are performed to determine the influence on resulting damage areas at specific impact energies. The experiments revealed that the investigated modifications during processing of UD-CFRP-Steel specimens can significantly lower the thermal residual stress and thereby improve the tensile strength.


Sign in / Sign up

Export Citation Format

Share Document