Cooperative guidance law for active aircraft defense with intercept angle constraint

Author(s):  
Min He ◽  
Xiaofang Wang ◽  
Hai Lin ◽  
Nianyuan Xiao ◽  
Zonglin Du

In this paper, the three-body engagement scenario is considered where a target aircraft fires a defender missile to intercept the attacker missile. A cooperative guidance law with the intercept angle constraint for both of the defender missile and target has been presented. With the assumption that the attacker missile uses augmented proportional navigation guidance law, the nonlinear relative motion model of target-attacker-defender engagement is built. Considering the requirement of miss distance and satisfying the intercept angle constraint, the function index is established. The cooperative guidance law is derived based on optimal control theory. Moreover, given initial launch condition, the feasible intercept angle region of defender is analyzed, considering the limited maneuverability of defender and target and the intercept time constraint which means the attacker must be intercepted by the defender prior to hitting the target. Similarly, the feasible launch region of defender is obtained with the given designated intercept angle, variable overload of defender and target, and intercept time constraint. The simulation results further demonstrate that within the feasible region of designated intercept angle and launching condition, the defender can intercept the attacker with designated intercept angle successfully despite of the limited maneuverability. Compared with conventional uncooperative situation, the target-defender cooperation could significantly reduce the maneuverability requirements for the defender.

Author(s):  
Feng Fang ◽  
Yuan-Li Cai

The three-body engagement where a target aircraft protects itself by using a cooperative defender missile to intercept an attacking missile is investigated. It is formulated as a constrained linear quadratic optimal problem. Two different optimal cooperative guidance laws for the target and defender are proposed in two cooperation schemes. Since any control effort to reduce the miss distance to smaller than missile’s lethal radius is wasted, the guidance laws are derived to achieve an upper bound on the missile–defender miss distance. In the two-way cooperation scheme, the target and the defender act as a team. How the target makes a trade-off between aiding the defender and evading the missile is investigated by considering both the missile–target zero-effort miss distance and the control effort into the cost function. Without the penalty weight on the missile–target zero-effort miss distance, the two-way minimum control effort guidance laws are available. In the one-way cooperation scheme, the target uses a known evasion strategy independently. The optimal cooperative guidance law is derived for minimizing the control effort of the defender. Simulation results show that these proposed guidance laws can provide a specified missile–defender miss distance and save the control effort compared with the zero-miss-distance guidance law. Two-way cooperation scheme outperforms one-way cooperation scheme.


2005 ◽  
Vol 29 (2) ◽  
pp. 195-209
Author(s):  
Dany Dionne ◽  
Hannah Michalska

A new adaptive proportional navigation law for interception of a maneuvering target is presented. The approach employs a bank of guidance laws and an on-line governor to select the guidance law in effect at each time instant. The members of the bank are the proportional navigation law and a companion law suitable for a target moving with a constant acceleration. The governor is a hierarchical decision rule which uses the outputs from a maneuver detector and the available a-priori information about the expected number of evasive maneuvers. Simulation results demonstrate that the adaptive approach leads to a reduction in the miss distance as compared with cases where only a single non-adaptive guidance law is available.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jianbo Zhao ◽  
Fenfen Xiong

A novel cooperative guidance scenario is proposed that implements fire-and-forget attacks for seeker-less missiles with a cheap finder for stationary targets and without requiring real-time communication among missiles or precise position information. Within the proposed cooperative scenario, the classic leader-follower framework is utilized, and a two-stage cooperative guidance law is derived for the seeker-less missile. Linear-quadratic optimal control and biased proportional navigation guidance (PNG) are employed to develop this two-stage cooperative guidance law to minimize the control cost in the first stage and to reduce the maximum acceleration command in the second stage when the acceleration command is continuous. Simulations and comparisons are conducted that demonstrate the effectiveness and advantages of the proposed guidance law.


Author(s):  
Hui Wang ◽  
Jiang Wang ◽  
Defu Lin

To study the optimal impact-angle-control guidance problem with multiple terminal constraints, a generalized optimal impact-angle-control guidance law with terminal acceleration response constraint (GOIACGL-TARC) is proposed. In the deriving, a time-to-go − nth power weighted object function is adopted to derived the GOIACGL-TARC and a general expression of GOIACGL-TARC is presented. Based on the general expression of GOIACGL-TARC, three guidance laws, GOIACGL-TARC1/TACC0/TACC1 are proposed and the inheritance relationship between GOIACGL-TACC0/TACC1/TARC1 and the conventional optimal guidance law with impact angle constraint is demonstrated. Performance analysis of the proposed guidance laws shows that in the case of GOIACGL-TACC0, the terminal acceleration is not zero at n = 0 and only as n > 0, the terminal acceleration converges to zero; in the case of GOIACGL-TACC1 and GOIACGL-TARC1, GOIACGL-TARC1 can guarantee the acceleration response to reach the exactly zero value but GOIACGL-TACC1 cannot, which can only guarantee the acceleration command to reach the exactly zero value. It is pointed out that compared with the biased proportional navigation guidance law, GOIACGL-TARC1 has an outstanding guidance performance in acceleration response, miss distance, and terminal impact angle error.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 231
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

The paper proposes a two-dimensional impact time control cooperative guidance law under constant velocity and a three-dimensional impact time control cooperative guidance law under time-varying velocity, which can both improve the penetration ability and combat effectiveness of multi-missile systems and adapt to the complex and variable future warfare. First, a more accurate time-to-go estimation method is proposed, and based on which a modified proportional navigational guidance (MPNG) law with impact time constraint is designed in this paper, which is also effective when the initial leading angle is zero. Second, adopting cooperative guidance architecture with centralized coordination, using the MPNG law as the local guidance, and the desired impact time as the coordination variables, a two-dimensional impact time control cooperative guidance law under constant velocity is designed. Finally, a method of solving the expression of velocity is derived, and the analytic function of velocity with respect to time is given, a three-dimensional impact time control cooperative guidance law under time-varying velocity based on desired impact time is designed. Numerical simulation results verify the feasibility and applicability of the methods.


Author(s):  
Chunyan Zhang ◽  
Jianmei Song ◽  
Lan Huang ◽  
Gaohua Cai

The cooperative attack problem of multiple missiles considering the randomness of the unreliable communication network is investigated. Firstly, the stochastic communication network is described by a Bernoulli random model. And the cooperative guidance law with unreliable communication network is proposed, which is composed of the upper consensus algorithm of desired impact time and the local proportional navigation with time-varying navigation gain. Each node of the upper cooperative system uses different update gain to adjust the desired impact time to improve the cooperative performance. Secondly, the mean square stability of the upper cooperative system is analyzed and proved. The explicit necessary and sufficient conditions of the mean square stability are presented for the two-missile cooperative attack system. And the analytic expression of the mean of the cooperative impact time is derived since it influences the attack precision directly and significantly. Thirdly, the effectiveness of the proposed cooperative guidance law with unreliable communication network is verified by simulation. And the influence of the update gain, the communication step, and the mean of link probability on the cooperative attack precision is analyzed.


2014 ◽  
Vol 598 ◽  
pp. 723-730
Author(s):  
Mohamed Zakaria ◽  
Talaat Ibrahim ◽  
Alaa El Din Sayed Hafez ◽  
Hesham Abdin

Several conditions affect the performance of guidance law like target parameters or delayed line of sight rate. A variable navigation ratio is used to enhance the performance of guidance law. In this paper a Genetic Algorithm is used to formulate different forms of variable gains and measure the miss distance. An optimization process is running to find the minimum miss distance. The average values and standard deviation of miss distance for all genetic algorithm individuals are calculated to measure the performance and robustness of guidance law. Two guidance laws are considered proportional navigation (PN) and differential geometry (DG). The simulation results show that the proportional navigation is superior to differential geometry performance in the presence of delayed line of sight rate.


2013 ◽  
Vol 347-350 ◽  
pp. 980-984
Author(s):  
De Long Feng ◽  
Suo Chang Yang ◽  
Yun Zhi Yao ◽  
Ying Xi Liu

This paper proposed an improved method on the basis of the extended proportional guidance law. The method solved the weak observability problem of system sate in guided missile attacking maneuvering target. It is simple in form and easy for engineering implementation. This paper set up relative motion model and the observability theory indexes. The improved propotional guidance law is simulated using the MATLAB language. The simulation results show that the method is reasonable, effective and improving the observability.


Author(s):  
Runle Du ◽  
Xinguang Zou ◽  
Di Zhou ◽  
Jiaqi Liu

This paper addresses a pursuer tracking problem where the pursuer's acceleration is given by a proportional navigation (PN) guidance law with a time-varying navigation ratio which varies with the relative range between the pursuer and its target. Based on a motion model that exactly describes the relative motion and the PN guidance law, a novel filter for tracking such a pursuer is designed using interactive multiple model (IMM) algorithm and unscented Kalman filtering (UKF) technique. This filter is able to accurately estimate the relative range, relative velocity, and the acceleration of pursuer even if the pursuer adopts a PN guidance law with time-varying navigation ratio. The proposed tracking method is evaluated in extensive Monte Carlo simulations. It is shown that accurate estimation results have been obtained, and the model probabilities in the IMM UKF filter are consistent with real situations.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xing Wei ◽  
Yongji Wang ◽  
Shuai Dong ◽  
Lei Liu

In order to conduct saturation attacks on a static target, the cooperative guidance problem of multimissile system is researched. A three-dimensional guidance model is built using vector calculation and the classic proportional navigation guidance (PNG) law is extended to three dimensions. Based on this guidance law, a distributed cooperative guidance strategy is proposed and a consensus protocol is designed to coordinate the time-to-go commands of all missiles. Then an expert system, which contains two extreme learning machines (ELM), is developed to regulate the local proportional coefficient of each missile according to the command. All missiles can arrive at the target simultaneously under the assumption that the multimissile network is connected. A simulation scenario is given to demonstrate the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document