Influence of the scale reduction in designing sockets for trans-tibial amputees

Author(s):  
Nawfal Dakhil ◽  
Tristan Tarrade ◽  
Michel Behr ◽  
Fuhao Mo ◽  
Morgane Evin ◽  
...  

The development of artificial prosthetic lower limbs aims to improve patient’s mobility while avoiding secondary problems resulting from the use of the prostheses themselves. The residual limb is a pressure-sensitive area where skin injuries and pain are more likely to develop. Requirements for adequate prosthetic limbs have now become urgent to improve amputee’s quality of life. This study aims to understand how socket design parameters related to geometry can influence pressure distribution in the residual limb. A finite element model was developed to simulate the mechanical loading applied on the residual limb of a below-knee amputee while walking. A sensitivity analysis to socket initial geometry, scaling the socket downward in the horizontal plane, was performed. Recordings include stress levels on the skin and in the residual limb deep soft tissues. Peak stress was reduced by up to 51% with a limited reduction of the socket size. More important scale reduction of the residual limb would lead to possible negative effects, such as stress concentrations in sensitive areas. This result confirms the interest of the prosthetist to develop a well-fitting socket, possibly a little smaller than the residual limb itself, in order to avoid residual limb mobility in the socket that could cause friction and stress concentrations. Non-homogeneous geometrical reductions of the socket should be further investigated.

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xin Pan ◽  
Xiaotian He ◽  
Haiqi Wu ◽  
Chuanlong Ju ◽  
Zhinong Jiang ◽  
...  

AbstractImbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency, accuracy, and service life of equipment. To automatically reduce the imbalance vibration during the operational process, different types of active balancing actuators have been designed and widely applied in actual production. However, the existing electromagnetic-ring active balancing actuator is designed based on an axial excitation structure which can cause structural instability and has low electromagnetic driving efficiency. In this paper, a novel radial excitation structure and the working principle of an electromagnetic-ring active balancing actuator with a combined driving strategy are presented in detail. Then, based on a finite element model, the performance parameters of the actuator are analyzed, and reasonable design parameters are obtained. Self-locking torque measurements and comparative static and dynamic experiments are performed to validate the self-locking torque and driving efficiency of the actuator. The results indicate that this novel active balancing actuator has sufficient self-locking torque, achieves normal step rotation at 2000 r/min, and reduces the driving voltage by 12.5%. The proposed novel balancing actuator using radial excitation and a combination of permanent magnets and soft-iron blocks has improved electromagnetic efficiency and a more stable and compact structure.


Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


2021 ◽  
Vol 10 (5) ◽  
pp. 1056
Author(s):  
Giovanni Beltrami ◽  
Gabriele Ristori ◽  
Anna Maria Nucci ◽  
Alberto Galeotti ◽  
Angela Tamburini ◽  
...  

Recently, custom-made 3D-printed prostheses have been introduced for limb salvage surgery in adult patients, but their use has not been described in pediatric patients. A series of 11 pediatric patients (mean age 10.8 years; range 2–13) with skeletal tumors treated with custom-made implants for the reconstruction of bony defects is described. Patients were followed up every 3 months. Functional results were evaluated by the Musculoskeletal Tumor Society Score (MSTS) for upper and lower limbs. The mean follow-up was 25.7 months (range 14–44). Three patients died after a mean of 19.3 months postoperatively—two because of disease progression and the other from a previous malignancy. Three patients experienced complications related to soft tissues. One patient required device removal, debridement, and antibiotic pearls for postoperative infection. Partial osseointegration between grafts and host bone was observed within a mean of 4 months. At the final follow-up, mean MSTS score was 75%. 3D prostheses may yield biological advantages due to possible integration with the host bone and also through the use of vascularized flaps. Further research is warranted.


Author(s):  
Michael G. Katona

AASHTO’s ad hoc method (AAM) for predicting free-field soil stress under a rectangular loading area is a simple and very useful tool for the analysis of buried culverts subject to vehicular wheel loads. AAM assumes the surface load spreads with soil depth into an ever-increasing rectangular area whose dimensions are controlled by a constant spread angle θ usually taken as 30°, denoted as AAM-30°. Both simplified and comprehensive culvert analysis procedures utilize AAM predictions for adjusting pressure distributions acting on the culvert periphery. Also, AAM-30° is routinely used to determine the two-wheel soil interaction depth, in which the combined effect of both axial wheels need to be considered. To date, a thorough accuracy analysis of AAM-30° has not been published in the open literature. This paper provides a unique and rigorous evaluation of AAM-30° using an exact solution from an elasticity-based model (EBM) of a homogeneous half-space with rectangular surface load. One key discovery is the depth parameter called y*, which is the soil depth at which AAM-30° peak-stress prediction exactly matches the exact EBM solution. Moreover, it is shown that y* may be determined by a simple, yet accurate formula that only depends on the square root of the load area. However, the investigation reveals that AAM-30° significantly underestimates peak stress in the shallow-depth zone 0 <  y < ½ y* by as much as 31.3% of the applied surface pressure. As this is a large nonconservative error it cannot be ignored. Accordingly, a very simple modification is introduced called AAM-θ*, in which θ* is a spread angle that linearly increases to 30° at soil depth ½ y* and thereafter θ* remains constant at 30°. An accuracy evaluation of AAM-θ* reveals an order of magnitude increase in accuracy in which the small residual error is conservative, not nonconservative. The paper concludes with discussions on applying AAM-θ* to the analysis of buried culverts when using either simple or finite element model solution procedures.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


10.3823/2280 ◽  
2017 ◽  
Vol 10 ◽  
Author(s):  
Lidiane Souza Lima ◽  
Viviane Oliveira de Sousa Correia ◽  
Tycianne Karoline Garção Nascimento ◽  
Bárbara Jeane Pinto Chaves ◽  
José Rodrigo Santos Silva ◽  
...  

Objectives: to identify the sociodemographic and health profile of burn victims, knowing the characteristics of the events and detecting the major analgesics prescribed in the emergency department. Methods: descriptive, exploratory and quantitative study with 16 burn victims treated at a Burn Treatment Unit from October 2015 to May 2016. Results: the average age of participants was 31.8 years (± 14.1). Mostly, the subjects were male (62.5%), single (43.8%), brown (68.8%), economically active (75.0%) and coming from Aracaju and its surroundings (62.5%). Injuries from burns were mostly of second degree (93.8%) and reached the lower limbs (68.8%). The average burned body surface was 15.8% (± 11.5). The circumstances surrounding burns occurred mainly at home (50.0%), on Sundays (25.0%) and in the shifts morning (37.5%) and night (37.5%). The main etiological agent was alcohol (31.3%). All patients received analgesia in the emergency department, but the minority had pain documented (18.8%). The physician was the only professional who reported pain in their records, but did incompletely (18.8%). Conclusion: due to the negative effects of burns, it is crucial to adopt educational and preventive measures to change the current scenario of epidemiology of such trauma. Keywords: Burns; Epidemiology; Analgesia; Emergency.


2018 ◽  
Vol 4 (1) ◽  
pp. 149-151
Author(s):  
Michael Stiehm ◽  
Stefanie Kohse ◽  
Kerstin Schümann ◽  
Sebastian Kaule ◽  
Stefan Siewert ◽  
...  

AbstractVenous ulcers of the lower limbs are one clinical manifestation of chronic venous insufficiency. Currently, there is no venous valve prosthesis available. This study presents novel venous valve prostheses made of threedimensional electrospun fibrous nonwoven leaflets. The aim of this study was to prove the feasibility of the manufacturing process as well as to investigate design features of the venous valve prostheses from a hemodynamic point of view. An adapted pulse duplicator system (ViVitrolabs, Victoria, BC, CA) was used for characterization of the hydrodynamic performance. For eight different venous valve prototypes flow rate, effective orifice area and regurgitation fraction was investigated in vitro. In particular, tricusp valve designs showed an up to 40% higher effective orifice area as well as 15% higher maximum flowrate compared to bicusp valve designs. However, the regurgitation fraction of the bicusp valve designs is up to 86% lower compared to tricusp valve. Additionally, the hemodynamic performance of the tricuspid valves showed a high sensitivity regarding the leaflet length. Bicuspid valves are less sensitive to changes of design parameters, more sufficient and therefore highly reliable.


2000 ◽  
Author(s):  
Tammy Haut Donahue ◽  
Maury L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

Abstract A finite element model of the tibio-femoral joint in the human knee was created using a new technique for developing accurate solid models of soft tissues (i.e. cartilage and menisci). The model was used to demonstrate that constraining rotational degrees of freedom other than flexion/extension when the joint is loaded in compression markedly affects the load distribution between the medial and lateral sides of the joint. The model also was used to validate the assumption that the bones can be treated as rigid.


Sign in / Sign up

Export Citation Format

Share Document