scholarly journals Optimal Design of Novel Electromagnetic-Ring Active Balancing Actuator with Radial Excitation

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xin Pan ◽  
Xiaotian He ◽  
Haiqi Wu ◽  
Chuanlong Ju ◽  
Zhinong Jiang ◽  
...  

AbstractImbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency, accuracy, and service life of equipment. To automatically reduce the imbalance vibration during the operational process, different types of active balancing actuators have been designed and widely applied in actual production. However, the existing electromagnetic-ring active balancing actuator is designed based on an axial excitation structure which can cause structural instability and has low electromagnetic driving efficiency. In this paper, a novel radial excitation structure and the working principle of an electromagnetic-ring active balancing actuator with a combined driving strategy are presented in detail. Then, based on a finite element model, the performance parameters of the actuator are analyzed, and reasonable design parameters are obtained. Self-locking torque measurements and comparative static and dynamic experiments are performed to validate the self-locking torque and driving efficiency of the actuator. The results indicate that this novel active balancing actuator has sufficient self-locking torque, achieves normal step rotation at 2000 r/min, and reduces the driving voltage by 12.5%. The proposed novel balancing actuator using radial excitation and a combination of permanent magnets and soft-iron blocks has improved electromagnetic efficiency and a more stable and compact structure.

Author(s):  
Nawfal Dakhil ◽  
Tristan Tarrade ◽  
Michel Behr ◽  
Fuhao Mo ◽  
Morgane Evin ◽  
...  

The development of artificial prosthetic lower limbs aims to improve patient’s mobility while avoiding secondary problems resulting from the use of the prostheses themselves. The residual limb is a pressure-sensitive area where skin injuries and pain are more likely to develop. Requirements for adequate prosthetic limbs have now become urgent to improve amputee’s quality of life. This study aims to understand how socket design parameters related to geometry can influence pressure distribution in the residual limb. A finite element model was developed to simulate the mechanical loading applied on the residual limb of a below-knee amputee while walking. A sensitivity analysis to socket initial geometry, scaling the socket downward in the horizontal plane, was performed. Recordings include stress levels on the skin and in the residual limb deep soft tissues. Peak stress was reduced by up to 51% with a limited reduction of the socket size. More important scale reduction of the residual limb would lead to possible negative effects, such as stress concentrations in sensitive areas. This result confirms the interest of the prosthetist to develop a well-fitting socket, possibly a little smaller than the residual limb itself, in order to avoid residual limb mobility in the socket that could cause friction and stress concentrations. Non-homogeneous geometrical reductions of the socket should be further investigated.


2021 ◽  
Vol 19 ◽  
pp. 630-635
Author(s):  
H. Gallas ◽  
◽  
S. Le Ballois ◽  
H. Aloui ◽  
L. Vido

This paper proposes a fast and accurate optimal sizing design of 1.5 MW Permanent Magnets Synchronous Generator (PMSG) for a grid-connected wind application. A design strategy inspired from the output space mapping technique is adopted. A fast analytical model is used and detailed to determine the parameters and the performances of the PMSG. Then, the results are validated by a precise finite element model and adjusted iteratively until coherence between the two models is obtained. A multi-objective particle swarm optimization algorithm is deployed with aim of reducing the total losses and weight of the generator. The algorithm's parameters and results are given and analyzed. Three optimal machines are chosen and tested using a 2D-finite element model. The main design parameters of the optimal generators are given and discussed. Good efficiency and optimal designs are obtained for the sized machines thanks to the adopted design strategy.


Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.


2013 ◽  
Vol 448-453 ◽  
pp. 2114-2119 ◽  
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal Mohd Nor

This paper describes a design optimization to achieve optimal performance of a two novel single-phase short-stroke tubular linear permanent magnet motors (TLPMMs) with rectangular and trapezoidal permanent magnets (PMs) structures. The motors equipped with a quasi-Halbach magnetized moving-magnet armature and slotted stator with a single-slot carrying a single coil. The motors have been developed for reciprocating compressor applications such as household refrigerators. It is observed that the TLPMM efficiency can be optimized with respect to the leading design parameters (dimensional ratios). Furthermore, the influence of mover back iron is investigated and the loss of the motor is computed. Finite element analysis (FEA) is employed for the optimization, and the optimal values of the ratio of the axial length of the radially magnetized magnets to the pole pitch as well as the ratio of the PMs outer radius-to-stator outer radius (split ratio), are identified.


2017 ◽  
Vol 24 (s2) ◽  
pp. 103-110
Author(s):  
Zhengyao He ◽  
Qiang Shi ◽  
Shaoxuan Wu

Abstract In underwater unmanned vehicles, complex acoustic transducer arrays are always used to transmitting sound waves to detect and position underwater targets. Two methods of obtaining low-sidelobe transmitting beampatterns for acoustic transmitting arrays of underwater vehicles are investigated. The first method is the boundary element model optimization method which used the boundary element theory together with the optimization method to calculate the driving voltage weighting vector of the array. The second method is the measured receiving array manifold vector optimization method which used the measured receiving array manifold vectors and optimization method to calculate the weighting vector. Both methods can take into account the baffle effect and mutual interactions among elements of complex acoustic arrays. Computer simulation together with experiments are carried out for typical complex arrays. The results agree well and show that the two methods are both able to obtain a lower sidelobe transmitting beampattern than the conventional beamforming method, and the source level for each transmitting beam is maximized in constraint of the maximum driving voltage of array elements being constant. The effect of the second method performs even better than that of the first method, which is more suitable for practical application. The methods are very useful for the improvement of detecting and positioning capability of underwater unmanned vehicles.


2021 ◽  
Vol 7 (7) ◽  
pp. 61-70
Author(s):  
Andrey A. TATEVOSYAN ◽  

A method for optimizing the parameters of a modular half-speed synchronous generator with permanent magnets (PMSG) and the generator voltage control system with a neural network-based algorithm are proposed. The basic design scheme of the modular half-speed PMSG is considered, which features a compact layout of the generator main parts, thereby ensuring the optimal use of the working volume, smaller sizes of the magnetic system, and smaller mass of the active materials used in manufacturing the machine. Owing to the simple and reliable design of the generator, its output parameters can be varied in a wide range with using standard electrical circuits for voltage stabilization and current rectification along with an additional voltage regulation unit. Owing to this feature, the design scheme of the considered generator has essential advantages over the existing analogs with a common cylindrical magnetic core. In view of these circumstances, the development of a high-efficient modular half-speed PMSG as an autonomous DC power source is of both scientific and practical interest; this generator can be used to supply power to a large range of electricity consumers located in rural areas, low-rise residential areas, military communities, allotments etc. In solving the problem of optimizing the generator’s magnetic system, the main electrical machine analysis equation is obtained. The optimal ratios of the winding wire mass to the mass of permanent magnets and of the PM height to the air gap value for achieving the maximum specific useful power output have been determined. An analytical correlation between the optimal design parameters of a half-speed modular PMSG and its power performance parameters has been established. The expediency to develop a neural network-based control system is shown. The number of load-bearing modules of the half-speed PMSG is determined depending on the wind velocity, load factor and the required output voltage. The neural network was trained on the examples of a training sample using a laboratory test bench. The neural network was implemented in the MatLab 2019b environment by constructing a synchronous generator simulation model in the Simulink software extension. The possibility of using the voltage control system of a half-speed modular PMSG with a microcontroller for operation of the neural network platform of the Arduino family (ArduinoDue) independently of the PC is shown.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


Author(s):  
Belli Zoubida ◽  
Mohamed Rachid Mekideche

Purpose – Reducing eddy current losses in magnets of electrical machines can be obtained by means of several techniques. The magnet segmentation is the most popular one. It imposes the least restrictions on machine performances. This paper investigates the effectiveness of the magnet circumferential segmentation technique to reduce these undesirable losses. The full and partial magnet segmentation are both studied for a frequency range from few Hz to a dozen of kHz. To increase the efficiency of these techniques to reduce losses for any working frequency, an optimization strategy based on coupling of finite elements analysis and genetic algorithm is applied. The purpose of this paper is to define the parameters of the total and partial segmentation that can ensure the best reduction of eddy current losses. Design/methodology/approach – First, a model to analyze eddy current losses is presented. Second, the effectiveness of full and partial magnet circumferential segmentation to reduce eddy loss is studied for a range of frequencies from few Hz to a dozen of kHz. To achieve these purposes a 2-D finite element model is developed under MATLAB environment. In a third step of the work, an optimization process is applied to adjust the segmentation design parameters for best reduction of eddy current losses in case of surface mounted permanent magnets synchronous machine. Findings – In case of the skin effect operating, both full and partial magnet segmentations can lead to eddy current losses increases. Such deviations of magnet segmentation techniques can be avoided by an appropriate choice of their design parameters. Originality/value – Few works are dedicated to investigate partial magnet segmentation for eddy current losses reduction. This paper studied the effectiveness and behaviour of partial segmentation for different frequency ranges. To avoid eventual anomalies related to the skin effect an optimization process based on the association of the finite elements analysis to genetic algorithm method is adopted.


1999 ◽  
Author(s):  
C. Channy Wong ◽  
Douglas R. Adkins ◽  
Ronald P. Manginell ◽  
Gregory C. Frye-Mason ◽  
Peter J. Hesketh ◽  
...  

Abstract An integrated microsystem to detect traces of chemical agents (μChemLab™) is being developed at Sandia for counter-terrorism and nonproliferation applications. This microsystem has two modes of operation: liquid and gas phase detection. For the gas phase detection, we are integrating these critical components: a preconcentrator for sample collection, a gas chromatographic (GC) separator, a chemically selective flexural plate wave (FPW) array mass detector, and a latching valve onto a single chip. By fabricating these components onto a single integrated system (μChemLab™ on a chip), the advantages of reduced dead volume, lower power consumption, and smaller physical size can be realized. In this paper, the development of a latching valve will be presented. The key design parameters for this latching valve are: a volumetric flow rate of 1 mL/min, a maximum hold-off pressure of 40 kPa (6 psi), a relatively low power, and a fast response time. These requirements have led to the design of a magnetically actuated latching relay diaphragm valve. Magnetic actuation is chosen because it can achieve sufficient force to effectively seal against back pressure and its power consumption is relatively low. The actuation time is rapid, and valve can latch in either an open or closed state. A corrugated parylene membrane is used to separate the working fluid from internal components of the valve. Corrugations in the parylene ensure that the diaphragm presents minimum resistance to the actuator for a relativley large deflection. Two different designs and their performance of the magnetic actuation have been evaluated. The first uses a linear magnetic drive mechanism, and the second uses a relay mechanism. Preliminary results of the valve performance indicates that the required driving voltage is about 10 volts, the measured flow rate is about 50 mL/min, and it can hold off pressure of about 5 psi (34 kPa). Latest modifications of the design show excellent performance improvements.


Sign in / Sign up

Export Citation Format

Share Document