A profit-based self-scheduling framework for generation company energy and ancillary service participation in multi-constrained environment with renewable energy penetration

2019 ◽  
Vol 31 (4) ◽  
pp. 549-569
Author(s):  
Srikanth Reddy ◽  
Lokesh Panwar ◽  
Bijaya Ketan Panigrahi ◽  
Rajesh Kumar ◽  
Lalit Goel ◽  
...  

This paper presents a profit-based self-scheduling framework for generation company participation in energy and ancillary service markets under multi-constrained environment with renewable energy participation. The participation strategies of generation company include various objectives incorporating economic (profit maximization), environmental (emission minimization), and social (maximum load satisfaction) aspects. The total objective under single, dual and multi-constrained approaches is formulated along with appropriate constraints for energy, spinning reserve, and non-spinning reserve offerings in various markets. In addition, the impact of renewable energy participation in energy market on scheduling decisions of generation company in different markets is also examined. The renewable energy independent power producers namely wind energy and solar photovoltaic energy generators are considered in this study. The sensitivity analysis is also carried out to examine the impact of reserve deployment probability on optimal offerings and generation company surplus in energy as well as ancillary service markets. To solve the proposed framework, binary fireworks algorithm is used, considering the binary natured commitment problem of generation company’s thermal units. The simulation results of proposed framework tested using thermal units, wind energy independent power producer, solar photovoltaic independent power producer are presented for base case and various scenarios involving single, dual and multi objectives. The comparison shows the effectiveness of proposed multi-constrained approach in arriving at optimal offering of generation company under economic, environmental and social constraints. Therefore, this integrated approach can prove to be an effective tool for generation company participation in energy and ancillary service market under renewable participation.

2021 ◽  
Author(s):  
Alberto Vannoni ◽  
Jose Angel Garcia ◽  
Weimar Mantilla ◽  
Rafael Guedez ◽  
Alessandro Sorce

Abstract Combined Cycle Gas Turbines, CCGTs, are often considered as the bridging technology to a decarbonized energy system thanks to their high exploitation rate of the fuel energetic potential. At present time in most European countries, however, revenues from the electricity market on their own are insufficient to operate existing CCGTs profitably, also discouraging new investments and compromising the future of the technology. In addition to their high efficiency, CCGTs offer ancillary services in support of the operation of the grid such as spinning reserve and frequency control, thus any potential risk of plant decommissioning or reduced investments could translate into a risk for the well-functioning of the network. To ensure the reliability of the electricity system in a transition towards a higher share of renewables, the economic sustainability of CCGTs must be preserved, for which it becomes relevant to monetize properly the ancillary services provided. In this paper, an accurate statistical analysis was performed on the day-ahead, intra-day, ancillary service, and balancing markets for the whole Italian power-oriented CCGT fleet. The profitability of 45 real production units, spread among 6 market zones, was assessed on an hourly basis considering local temperature, specific plant layouts, and off-design performance. The assessment revealed that net income from the ancillary service market doubled, on average, the one from the day-ahead energy market. It was observed that to be competitive in the ancillary services market CCGTs are required to be more flexible in terms of ramp rates, minimum environmental loads, and partial load efficiencies. This paper explores how integrating a Heat Pump and a Thermal Energy Storage within a CCGT could allow improving its competitiveness in the ancillary services market, and thus its profitability, by means of implementing a model of optimal dispatch operating on the ancillary services market.


2014 ◽  
Vol 10 (1) ◽  
pp. 38-45
Author(s):  
Angel Terziev ◽  
Ivan Antonov ◽  
Rositsa Velichkova

Abstract Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements), the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.


2021 ◽  
Author(s):  
◽  
Ramesh Kumar Behara

The growing needs for electric power around the world has resulted in fossil fuel reserves to be consumed at a much faster rate. The use of these fossil fuels such as coal, petroleum and natural gas have led to huge consequences on the environment, prompting the need for sustainable energy that meets the ever increasing demands for electrical power. To achieve this, there has been a huge attempt into the utilisation of renewable energy sources for power generation. In this context, wind energy has been identified as a promising, and environmentally friendly renewable energy option. Wind turbine technologies have undergone tremendous improvements in recent years for the generation of electrical power. Wind turbines based on doubly fed induction generators have attracted particular attention because of their advantages such as variable speed, constant frequency operation, reduced flicker, and independent control capabilities for maximum power point tracking, active and reactive powers. For modern power systems, wind farms are now preferably connected directly to the distribution systems because of cost benefits associated with installing wind power in the lower voltage networks. The integration of wind power into the distribution network creates potential technical challenges that need to be investigated and have mitigation measures outlined. Detailed in this study are both numerical and experimental models to investigate these potential challenges. The focus of this research is the analytical and experimental investigations in the integration of electrical power from wind energy into the distribution grid. Firstly, the study undertaken in this project was to carry out an analytical investigation into the integration of wind energy in the distribution network. Firstly, the numerical simulation was implemented in the MATLAB/Simulink software. Secondly, the experimental work, was conducted at the High Voltage Direct Centre at the University of KwaZulu-Natal. The goal of this project was to simulate and conduct experiments to evaluate the level of penetration of wind energy, predict the impact on the network, and propose how these impacts can be mitigated. From the models analysis, the effects of these challenges intensify with the increased integration of wind energy into the distribution network. The control strategies concept of the doubly fed induction generator connected wind turbine was addressed to ascertain the required control over the level of wind power penetration in the distribution network. Based on the investigation outcomes we establish that the impact on the voltage and power from the wind power integration in the power distribution system has a goal to maintain quality and balance between supply and demand.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


2015 ◽  
Vol 4 (1) ◽  
pp. 11-19
Author(s):  
Mevlan Qafleshi ◽  
Driton R. Kryeziu ◽  
Lulezime Aliko

The energy generation in Albania is completely from the hydropower plants. In terms of GHG emissions this is 100% green. In Kosovo 97% of energy is generated from lignite fired power plants. Apart the energy generation, the combustion process emits around 8000 ktCO2/yr and 1.5 Mt of ash in the form of fly and bottom ash. In both countries there is no MWh power generated from wind energy, i.e. this energy source is not utilized. Here, a proposed project for five locations in Albania and Kosovo has been analyzed in detail with the aim of installing a 1kW wind turbine off-grid. The method of study is based on the application of RETScreen International program software. This proposed model is intended to replace a base case- a diesel generator with installed capacity 7kW.  The locations are selected three in Albania: Vlora, Korça and Elbasan, and two in Kosovo: Prishtina and Prizren. All are in different altitudes. By the calculation of RETScreen program, it has been analyzed the feasibility of the proposed projects by installing a wind turbine at hub’s height 20m. The climate data for each location were retrieved by the RETScreen program from NASA. Generally, the calculation of financial parameters for the investments came out to be positive, the impact of GHG reduction very significant. A 5500 USD investment for the implementation of proposed case showed an equity payback time of 2-3 yrs and GHG reduction of 2.2 tCO2/yr. The electricity delivery to load only from this 1 KW wind turbine resulted to be between 1.6-17 MWh/yr.


Author(s):  
Keenan Nakagawa ◽  
Amarjit Singh

The Kahuku Wind Farm of Hawaii has been laden with controversy since its inception in 2011. Although it was one of the two wind farms on Oahu responsible for supplying a combined 14% of the island’s renewable energy in 2018, citizens have been outspoken in their criticism of the facility. Local residents have cited concerns regarding adverse health effects to the surrounding community, as well as deaths of native birds and endangered bats caused by the turbines. The impact on the Hawaiian hoary bat population has been a focal point of numerous complaints, as more bats are being killed than initially predicted. To the dismay of their opponents, eight additional turbines are being erected in Kahuku as part of the Na Pua Makani Wind Energy Project. And, as of November 2019, approximately 200 individuals have been arrested while protesting it. To add to the controversy, wind farm officials are currently facing legal hurdles, as challengers are skeptical on whether the project’s environmental review correctly estimates the number of birds and bats that will fall victim to this new development. The purpose of this study is to analyze and evaluate the issues associated with the Kahuku Wind Farm and Na Pua Makani Wind Energy Project, as well as the position and arguments of stakeholders and litigants.


Author(s):  
Fugui Dong ◽  
Chunxu Jin ◽  
Lei Shi ◽  
Meimei Shang

Abstract With the trend of high proportion of renewable energy connecting with grid, peaking services has played a crucial role in the integration of wind power and other renewable energy sources. The current peaking service takes into account only the cost of thermal power units that providing peaking service without considering the impact of its own reliability on the peaking service and the safe operation of the power system. In this paper, the traditional uniform clearing mechanism has been improved, and the reliability factor of ancillary service provided by thermal power units has been included in the previous quotation-based sorting rule, and a multi-objective programming optimal purchasing model considering synergistic capacity cost and power system stability is established. According to the optimal solution of each objective, Pareto optimal solution of multi-objective programming problem is obtained by the ideal point method. Then the ancillary service price and purchase cost are obtained based on the solution.


2012 ◽  
Vol 721 ◽  
pp. 185-190 ◽  
Author(s):  
Emmanuel S. Karapidakis ◽  
Antonis G. Tsikalakis ◽  
Yiannis A. Katsigiannis ◽  
Marios Moschakis

In this paper, the impact of high wind power and photovoltaics penetration on the dynamic behavior of an island power system like one operates in Crete is investigated. Several simulations were performed leading to the fact that it is possible to achieve higher level of renewable energy sources penetration without significant dynamic security problems, if power units spinning reserve exists and the corresponding control systems have a sufficiently fast response.


2017 ◽  
Vol 18 ◽  
pp. 106-120 ◽  
Author(s):  
Anuj Banshwar ◽  
Naveen Kumar Sharma ◽  
Yog Raj Sood ◽  
Rajnish Shrivastava

Sign in / Sign up

Export Citation Format

Share Document