The protective role of curcumin against toxic effect of nonylphenol on bone development

2021 ◽  
pp. 096032712110305
Author(s):  
P Alısan Suna ◽  
O Cengız ◽  
A Ceyhan ◽  
E Atay ◽  
T Ertekin ◽  
...  

Introduction: In the study, it was aimed to investigate the possible protective effects of curcumin, a potent antioxidant, against the toxic effect of nonylphenol on bone development. Methods: Thirty pregnant female Wistar albino rats were used. The rats were randomly divided into the following five groups; the control group, corn oil group (150 µl/kg/day), nonylphenol group (50 µl/kg/day), curcumin group (100 mg/kg/day) and curcumin + nonylphenol group (100 mg/kg/day + 50 µl/kg/day). The doses were given by gavage from the 5th day to the 20th day of gestation. The fetuses were removed out on the 20th day of pregnancy by cesarean at the end of the study. After the sacrifice of the animals, double skeletal staining in front extremity (clavicula, scapula, humerus, radius, ulna) and hind extremity (femur, tibia, fibula), additionally histological and immunohistochemical examinations in femur bone were performed. Results: The nonylphenol group offspring have the lowest weights of fetuses and placenta, head-to-hip lengths, biparietal and occipitofrontal length, and also, bone length percentage and percentage of the ossification area in all measurements of the front extremity and hind extremity Interestingly, the groups treated with curcumin showed close to the control group in terms of double skeletal staining, histological, and immunohistochemical examinations. Conclusions: Our findings demonstrated an association between bone development and exposure to nonylphenol. The findings suggest that curcumin treatments may be effective in accelerating bone formation.

2011 ◽  
Vol 31 (6) ◽  
pp. 565-573 ◽  
Author(s):  
M Tutanc ◽  
V Arica ◽  
N Yılmaz ◽  
A Nacar ◽  
I Zararsiz ◽  
...  

Aim: In cyclosporin-A (CsA)-induced toxicity, oxidative stress has been implicated as a potential responsible mechanism. Therefore, we aimed to investigate the protective role of erdosteine against CsA-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. Materials and methods: Wistar albino rats were randomly separated into four groups. Group 1 rats treated with sodium chloride served as the control, group 2 rats were treated with CsA, group 3 with CsA plus erdosteine, and group 4 with erdosteine alone. Animals were killed and blood samples were analyzed for blood urea nitrogen (BUN), serum creatinine (Cr), uric acid (UA), total protein (TP), and albumin (ALB) levels. Kidney sections were analyzed for malondialdehyde (MDA) and nitric oxide (NO) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as for histopathological changes. Results: In the CsA group, MDA, GSH-Px, BUN, and Cr levels were increased. The TP and ALB levels were decreased. These changes had been improved by erdosteine administration. Other biochemical parameters did not show any significant change. Conclusion: These results indicate that erdosteine produces a protective mechanism against CsA-induced nephrotoxicity and suggest a role of oxidative stress in pathogenesis.


2014 ◽  
Vol 38 (3) ◽  
pp. 774-782 ◽  
Author(s):  
Merve Bacanlı ◽  
Sevtap Aydın ◽  
Gökçe Taner ◽  
Hatice Gül Göktaş ◽  
Tolga Şahin ◽  
...  

2010 ◽  
Vol 3 (5) ◽  
pp. 308-316 ◽  
Author(s):  
Yousif A. Asiri

Cyclophosphamide (CP) is a widely used drug in cancer chemotherapy and immunosuppression, which could cause toxicity of the normal cells due to its toxic metabolites. Probucol, a cholesterol-lowering drug, acts as potential inhibitor of DNA damage and shows to protect against doxorubicin-induced cardiomyopathy by enhancing the endogenous antioxidant system including glutathione peroxidase, catalase and superoxide dismutase. This study examined the possible protective effects of probucol, a lipid-lowering compound with strong antioxidant properties, against CPinduced cardiotoxicity. This objective could be achieved through studying the gene expression-based on the possible protective effects of probucol against CP-induced cardiac failure in rats. Adult male Wistar albino rats were assigned into four treatment groups: Animals in the first (control) and second (probucol) groups were injected intraperitoneally with corn oil and probucol (61 mg/kg/day), respectively, for two weeks. Animals in the third (CP) and fourth (probucol plus CP) groups were injected with the same doses of corn oil and probucol (61 mg/kg/day), respectively, for one week before and one week after a single dose of CP (200 mg/kg, I.P.). The p53, Bax, Bcl2 and oxidative genes signal expression were measured by real time PCR. CP-induced cardiotoxicity was clearly observed by a significant increase in serum creatine phosphokinase isoenzyme (CK-MB) (117%), lactate dehydrogenase (LDH) (64%), free (69%) and esterified cholesterol (42%) and triglyceride (69%) compared to control group. In cardiac tissues, CP significantly increases the mRNA expression levels of apoptotic genes, p53 with two-fold and Bax with 1.6-fold, and decreases the anti-apoptotic gene Bcl2 with 0.5-fold. Moreover, CP caused downregulation of antioxidant genes, glutathione peroxidase, catalase, and superoxide dismutase and increased the lipid peroxidation and decreased adenosine triphosphate (ATP) (40%) and ATP/ADP (44%) in cardiac tissues. Probucol pretreatment not only counteracted significantly the CP-induced increase in cardiac enzymes and apoptosis but also induced a significant increase in mRNA expression of antioxidant enzymes and improved ATP, ATP/ADP, glutathione (GSH) in cardiac tissues. In conclusion, data from the present study suggest that probucol prevents the development of CP-induced cardiotoxicity by a mechanism related, at least in part, to its ability to increase mRNA expression of antioxidant genes and to decrease apoptosis in cardiac tissues with the consequent improvement in mitochondrial oxidative phosphorylation and energy production.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2633 ◽  
Author(s):  
Atef M.K. Nassar ◽  
Yehia M.M. Salim ◽  
Khalid S.A. Eid ◽  
Hazem M. Shaheen ◽  
Abdullah A. Saati ◽  
...  

Sumithion (Fenitrothion) (SUM) is an organophosphorus insecticide used to combat a wide variety of plant pests. Exposure to SUM causes significant toxicity to the brain, liver, kidney, and reproductive organs through, for example, binding to DNA, and it induces DNA damage, which ends with oxidative stress. Therefore, the present study aimed to examine the protective role of bee products: a mixture of honey, propolis, palm pollen, and royal jelly (HPPJ) against SUM-induced toxicity. Twenty-four male albino rats (Rattus norvegicus) were classified into four groups, each containing six rats: control (corn oil), SUM (85 mg/kg; 1/20 LD50), HPPJ, and SUM + HPPJ once daily for 28 consecutive days. Blood samples were gently collected in sterilized ethylenediaminetetraacetic acid (EDTA) tubes for blood picture analyses and tubes without anticoagulant for serum isolation. Serum was used for assays of enzymatic and biochemical characteristics. The results revealed that SUM increased the weights of the liver, kidney, and brain as well as the enzymatic activity of glutathione peroxidase (GP), serum superoxide dismutase (SOD), and glutathione-S-transferase (GST). Additionally, SUM significantly increased the activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyltransferase (γ-GT) and glucose, uric acid, and creatinine contents, while decreasing the acetylcholine esterase (AChE) activity and total lipids and total protein content. Furthermore, because of the inclusion of phenolic, flavonoids, terpenoids, and sugars, the HPPJ mixture counteracted the hematological, renal, and hepatic toxicity of SUM exposure.


2017 ◽  
Vol 12 (4) ◽  
pp. 455
Author(s):  
Uzma Saleem ◽  
Shakila Sabir ◽  
Bashir Ahmad

<p>Chemotherapy-induced alopecia affects the pathological as well as the psychological aspects of the cancer patient. In the present study, the protective role of Nigella sativa was evaluated in both adult and newborn albino rats. The anagen phase was first induced. N. sativa oil, N. sativa decoction (5%, 10% and 15%) and minoxidil lotion (standard) were applied daily to the rats two days after the depilation. During the anagen VI phase of the hair follicles, alopecia was induced by giving cyclophosphamide 125 mg/kg, ip to the adult rat and 50 mg/kg to the newborn rats. Cyclophosphamide-induced the alopecia to the whole depilated area of skin in adult rat while alopecia totalis was observed in the newborn rat disease control group. N. sativa oil, N. sativa decoction (5%) showed a significant protective effect against cyclophosphamide-induced alopecia. In conclusion, it is evident that N. sativa provides significant protection against chemotherapy-induced alopecia.</p><p><strong>Video Clip of Methodology</strong>:</p><p>1 min 43 sec:   <a href="https://www.youtube.com/v/AKhk27V3juE">Full Screen</a>   <a href="https://www.youtube.com/watch?v=AKhk27V3juE">Alternate</a></p>


2017 ◽  
Vol 33 (6) ◽  
pp. 512-518 ◽  
Author(s):  
Seyedeh Missagh Jalali ◽  
Hossein Najafzadeh ◽  
Sadegh Bahmei

This study was performed to assess hepatotoxicity and alterations in liver antioxidant defence in acute lead (Pb) exposure and the protective effects of silymarin in comparison to D-penicillamine in rats. Forty eight Albino rats were divided in eight groups and received the following treatments in a 10-day experiment – group 1: normal saline as control; group 2: 25-mg/kg Pb acetate, intraperitoneally (IP) for the last 5 days; group 3: 100-mg/kg D-penicillamine, IP for the last 5 days; group 4: 200-mg/kg silymarin, orally for 10 days; and groups 5, 6, 7 and 8: in addition to Pb, they received D-penicillamine, for the last 5 days, silymarin for 10 days, a combination of silymarin for 10 days and D-penicillamine for the last 5 days and silymarin for the last 5 days, respectively. Pb acetate exposure induced significant elevation in serum alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzyme activities in group 2 compared to control group. Significant reductions in serum total protein and albumin in all Pb-exposed groups and in serum glucose in groups 2, 6 and 8 were also observed. Liver tissue superoxide dismutase and glutathione peroxidase were significantly lower in groups 2 and 8 compared to control group. Silymarin pretreatment and D-penicillamine administration in groups 5, 7 and 8 could significantly lower ALP, ALT and AST and improve liver antioxidant enzymes. Thus, acute Pb exposure induced hepatotoxicity with suppression of liver antioxidant defence system and silymarin, as an antioxidant could alleviate this effect.


2021 ◽  
Author(s):  
Ayman Ahmed Bassiouny El-Amawy ◽  
Samir Attia Mohammed Zaahkouk ◽  
Hesham Gamal Abdel Rasheed ◽  
Bassem Elsayed Elaraby Mohammed

Abstract The study was designed to clarify the hepato-renal protective effects of propolis extract against heavy metals-induced toxicity via oral administration to the males of albino rats. Lead (Pb), Nickel (Ni), Cadmium (Cd), and Antimony (Sb) are toxic heavy metals have the ability to produce reactive radicals in the biological systems causing public and animals health hazards through disrupting balances between pro-oxidant and antioxidant defense system, resulting in excessive reactive oxygen species (ROS) production. The most commonly affected organs are liver and kidney. Propolis is a natural product with different shapes and resinous substance collected by honey bees, it attenuates many diseases damage due to its anti-oxidative action and its potentiality to minimize the deleterious effects of free radicals on tissues. The concentrations of Pb, Cd, Ni and Sb as well as the activities of antioxidants endogenous enzymes including; glutathione peroxidase (Gpx), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD) were all determined in the tissues of liver and kidney; while aspartate transaminase (ASAT), alanine transaminase (ALAT), total protein (TP), urea and createnine, were measured in the serum of experimental rats beside histopathologicl examination in the tissues of liver and kidney. The oral administration of propolis provided a significantly therapeutic role against multi-metals-induced hepato-renal toxicity with relative improving to histopathological changes because of its scavenging and chelating properties as concluded from the present investigation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fatma Kermeoğlu ◽  
Umut Aksoy ◽  
Abdullah Sebai ◽  
Gökçe Savtekin ◽  
Hanife Özkayalar ◽  
...  

Aim. The aim of this study was to investigate the possible therapeutic impacts of two pineal hormones, melatonin and 5-methoxytryptophol (5-MTX), in a rat model of acute pulpitis by analyzing biochemical and histopathological parameters. Methods. This research was done using 32 male and female Wistar albino rats with weight between 200 and 250 g. The rats were randomly divided into four groups: a control group (rats without any treatment), acute pulpitis (AP) group, AP+melatonin group, and AP+5-MTX group. In the AP-induced groups, the crowns of the upper left incisors were removed horizontally. Lipopolysaccharide solution was applied to the exposed pulp tissue before the canal orifices were sealed with a temporary filling material. Melatonin (10 mg/kg) and 5-MTX (5 mg/kg) were administered intraperitoneally. The rats were sacrificed 24 hours after pulp injury, and trunk blood and pulp samples were collected. The concentrations of TNF-α, IL-1β, MMP-1, and MMP-2 in sera and pulp samples were determined using ELISA assay kits. Results. TNF-α, IL-1β, MMP-1, and MMP-2 levels in the serum and pulp tissues were considerably higher in the AP group than the control group ( p < 0.01 ‐ 0.001 ). In the AP+melatonin and AP+5-MTX groups, TNF-α, IL-1β, MMP-1, and MMP-2 levels in the serum and pulp tissues were significantly lower than in the AP group ( p < 0.05 ‐ 0.001 ). Conclusions. Both melatonin and 5-MTX provided protective effects on acute pulpitis, which indicates they may be promising as a therapeutic strategy for oral disease.


2017 ◽  
Vol 34 (02) ◽  
pp. 058-067
Author(s):  
A. Sadek ◽  
R. Khattab ◽  
A. Amer ◽  
A. Youssef

Abstract Introduction: Prolonged breathing of high oxygen concentration leads to hyperoxic acute lung injury. Neonatal Respiratory diseases usually require increased supplement of high oxygen concentrations, so neonates are more susceptible to hyperoxic acute lung injury. The aim of this work was to investigate the protective role of caffeine versus N-acetylcysteine against hyperoxic acute lung injury in neonatal rats. Materials and Methods: 32 albino rats aged seven days were used in this experiment. The pups were divided into four groups; 1) Control or normoxic group; rats placed in normoxic chamber where fraction of inspired oxygen (FiO2) was 0.21, 2) Hyperoxic group; rats were placed in hyperoxic chamber (FiO2>0.8) using an oxygen flow of 1.5 Litre/min, 3) Hyperoxia-CAF group; rats exposed to hyperoxia and received a single intra-peritoneal injection of 20 mg/kg caffeine just prior to exposure, and 4) Hyperoxia-NAC group; rats exposed to hyperoxia and received a single intra-peritoneal injection of 150 mg/kg N-acetylcysteine just prior to exposure. 48 hours after exposure, lung specimens were processed for histological and immunohistochemical study using caspase-3, cluster of differentiation-68-antibody (CD68) and interleukin-1-beta (IL-1β). Results: Neonatal hyperoxia led to severe impairment in lung architecture, with a highly significant increase in alveolar macrophages. Also, caspase and IL-1β immune-reaction were increased significantly as compared to control group. Caffeine could improve the histolopathological picture of hyperoxic acute lung injury, and also could decrease alveolar macrophage count and IL-1β immune-reaction better than N-acetylcysteine. Conclusion: Caffeine is more effective than N-acetylcysteine in prophylaxis against hyperoxic acute lung injury in neonates.


2015 ◽  
Vol 13 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Udhaya Lavinya Baskaran ◽  
Sherry Joseph Martin ◽  
Rasool Mahaboobkhan ◽  
Sabina Evan Prince

Sign in / Sign up

Export Citation Format

Share Document