Effect of selenium on vanadium toxicity in different regions of rat brain

1998 ◽  
Vol 17 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Syed Saleem Haider ◽  
A A Abdel-Gayoum ◽  
Mustafa El-Fakhri ◽  
Kilani M Ghwarsha

The protective effect of selenium on the neurotoxicity of vanadium in different brain regions of rats was investigated. The lipid peroxidation was significantly accentuated after intraperitoneal (i.p.) administration of vanadium (1.5 mg kg71 b.wt) for a period of 12 consecutive days to rats. The increase in lipid peroxidation was inhibited by selenium treatment (0.02 mg kg71 b.wt., i.p.) for 12 consecutive days. Vanadium exposure produced a decrease in nonprotein sulfhydryl group. Selenium treatment prevented the depression in nonprotein sulfhydryl group in all the brain regions of the vanadium exposed rats. The concentration of ascorbic acid was decreased after co-administration of selenium and vanadium. These results suggest that selenium protects neuronal cells against neurotoxic effects of vanadium by maintaining the availability of antioxidant nonprotein sulfhydryl groups. The decrease in ascorbic acid levels may have been due to its consumption in forming complexes with vanadium.

2003 ◽  
Vol 22 (12) ◽  
pp. 653-658 ◽  
Author(s):  
Pradeep K Shukla ◽  
Vinay K Khanna ◽  
Mohd Y Khan ◽  
Rikhab C Srimal

Curcumin (diferuloylmethane), an active ingredient of turmeric, is known to have multiple activities, including an antioxidant property, and has been suggested to be of use in treatment of several diseases. The present study has been undertaken to investigate the protective effect of curcumin against lead-induced neurotoxicity in rats. Exposure of rats to lead (50 mg/kg po) for 45 days caused an increase in lipid peroxidation (LPO) and a decrease in reduced glutathione (GSH) levels in cerebellum, corpus striatum, hippocampus and frontal cortex as compared with controls. Lead levels were significantly increased in these rats. Activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) decreased in all the brain regions following lead exposure. Interestingly, cotreatment with curcumin (100 mg/kg po) and lead (50 mg/kg po) for 45 days caused a significant decrease in LPO with concomitant decrease in lead levels in all the brain regions as compared with those treated with lead alone. A significant increase in reduced glutathione (GSH) levels, SOD and CAT activities was also observed in all the four brain regions in rats simultaneously treated with curcumin and lead. The results suggest that curcumin may prevent lead-induced neurotoxicity.


2016 ◽  
Vol 4 (1) ◽  
pp. 78 ◽  
Author(s):  
Muthumani Muthu ◽  
Sumedha Naroem Chanu ◽  
Shagirtha Kalist ◽  
Milton Prabu

Arsenic (As) is an environmental toxic metalloid that is present in everywhere such as air, water and soil. Generally, inorganic arsenic has a tendency to be more toxic than organic arsenic. The present study was designed to determine whether oral administration of silibinin (SB), which has been shown to have substantial antioxidant properties, when pre-administered (75 mg/kg body weight) once daily for 4 weeks along with arsenic (5 mg/kg) would prevent arsenic-induced changes in antioxidant defense system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX),glutathione-S-transferase (GST),glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), reduced glutathione (GSH), total sulfhydryl groups (TSH) and vitamin C in rat brain regions such as cortex, striatum, cerebellum, hippocampus and brain stem. Our study also examined the effect of SB over arsenic-induced reactive oxygen species (ROS) production and lipid peroxidation level (LPO) and protein carbonyl content (PC) in distinct brain regions of rats. Moreover, As also alters the lipid profiles such as total lipids, phospholipids, cholesterol, cerebrosides and gangliosides in various regions of the brain. Pre-administration of SB restores the altered enzymatic and non-enzymatic antioxidants, lipid profiles and also markedly reduced the ROS, LPO, PC and accumulation of As in various regions of the brain. These results suggested that arsenic-induced deficits in antioxidant enzyme activities and increase in ROS production and lipid peroxidation levels in brain regions can be remarkably prevented by pre-administration of SB. 


2015 ◽  
Vol 40 (6) ◽  
pp. 1197-1210 ◽  
Author(s):  
Naiani Ferreira Marques ◽  
Sílvio Terra Stefanello ◽  
Amanda L. F. Froeder ◽  
Alcindo Busanello ◽  
Aline Augusti Boligon ◽  
...  

1979 ◽  
Vol 57 (6) ◽  
pp. 595-599 ◽  
Author(s):  
P. D. Hrdina ◽  
K. Elson

The effect of tricyclic antidepressants, chlorpromazine, and some monoamine oxidase inhibitors on the accumulation of [14C]choline by crude synaptosomal (P2) fraction from different regions of rat brain (cortex, striatum, and hippocampus) was investigated. Analysis of choline uptake kinetics resulted in high- and low-affinity components with different Michaelis constants. All tricyclic antidepressants tested inhibited in a dose-dependent manner the high-affinity choline uptake in the three regions, amitriptyline being the most potent. The IC50 values correlated significantly with the relative potencies of imipramine congeners in binding to muscarinic receptors in the brain. Neither tranylcypromine nor pargyline in concentrations up to 0.1 mM had any effect on choline transport. Concentrations of tricyclic antidepressants effective in inhibiting the uptake of choline failed to influence significantly the activity of choline acetyltransferase in brain regions examined. The results suggest that the effect of imipramine congeners on high-affinity choline uptake may be reflected in the anticholinergic properties of these compounds.


1984 ◽  
Vol 218 (1) ◽  
pp. 131-138 ◽  
Author(s):  
S F Leong ◽  
J B Clark

The development of key enzyme activities concerned with glucose metabolism was studied in six regions of the rat brain in animals from just before birth (-2 days) through the neonatal and suckling period until adulthood (60 days old). The brain regions studied were the cerebellum, medulla oblongata and pons, hypothalamus, striatum, mid-brain and cortex. The enzymes whose developmental patterns were investigated were hexokinase (EC 2.7.1.1), aldolase (EC 4.1.2.13), lactate dehydrogenase (EC 1.1.1.27) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49). Hexokinase, aldolase and lactate dehydrogenase activities develop as a single cluster in all the regions studied, although the timing of this development varies from region to region. Glucose-6-phosphate dehydrogenase activity, however, declines relative to glycolytic enzyme activity as the brain matures. When the different brain regions are compared, it is clear that the medulla develops its glycolytic potential, as indicated by its potential enzyme activity, considerably earlier than the other regions (hypothalamus, striatum and mid-brain), with the cortex and cerebellar activities developing even later. This enzyme developmental sequence correlates well with the neurophylogenetic development of the brain and adds support to the hypothesis that the development of the potential for glycolysis in the brain is a necessary prerequisite for the development of neurological competence.


2018 ◽  
Vol 15 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Nagapuri Kiran Kumar ◽  
Mesram Nageshwar ◽  
Karnati Pratap Reddy

This study reports the ameliorative role of curcumin against sodium fluoride (NaF) induced oxidative stress in the brain of rats. The rats were divided into control, NaF (20 mg/kg), NaF+Curcumin (20mg/kg) and Curcumin (20mg/kg) groups respectively and treated at everyday interval for 60 consecutive days. Oxidative stress markers in the brain were measured at 60th day. NaF treatment significantly increased LPO content, but decreased the level of GSH and activities of SOD, GPx, and CAT the brain of rats in comparison to the control rats. Oral administration of curcumin to fluoride exposed rats significantly reversed the content of lipid peroxidation, as well as enhanced the level of GSH and SOD, GPx and CAT activities to normal compared to NaF exposed rats. Thus, curcumin showed the potential to prevent sodium fluoride induced oxidative damage in the brain of rats and curcumin may be useful agents against neurodegeneration in the brain.


2007 ◽  
Vol 2 (4) ◽  
pp. 538-546
Author(s):  
Anna Gumieniczek ◽  
Hanna Hopkała ◽  
Marcin Pruchniak

AbstractIn the present study, the induction of oxidative stress was examined in the testis of alloxan-induced diabetic rabbits. In addition, the protective effect of repaglinide, an oral anti-diabetic, at a dose of 1 mg daily was studied after four and eight weeks of the treatment. For these purposes, the levels of superoxide dismutase (Cu,Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione (GSH), ascorbic acid (AA), lipid peroxidation products (LPO) and protein carbonyl groups (PCG) were quantified. Hyperglycemia resulted in significant increases in the antioxidative enzymes, Cu, Zn-SOD, CAT, GSH-Px, and GSSG-R after four and eight weeks, respectively. There was also an increase in GSH level, and a decrease in the level of AA. These effects were accompanied by an elevation in testicular LPO levels and PCG levels. Repaglinide was found to normalize the activity of GSSG-R and levels of GSH and AA, and blunted the increased lipid peroxidation, however no decrease in PCG levels were observed. In conclusion, some oxidative changes provoked in the testis of rabbits by hyperglycemia, were found to be reduced with repaglinide treatment at therapeutic dose.


1994 ◽  
Vol 300 (2) ◽  
pp. 577-582 ◽  
Author(s):  
P T Kilpeläinen ◽  
O A Hietala

The activity of ornithine decarboxylase (ODC) measured in different regions of rat brain was highest in the hippocampus and lowest in the cerebellum. The ODC activity of a crude extract of the cerebellum was increased by the addition of GTP to the enzyme assay. Following dissociation of the ODC-antizyme complex by Sephadex G-75 chromatography in buffer containing 0.25 M NaCl, the GTP-activatable ODC was found in every brain region analysed. This GTP-activatable brain ODC has greater affinity for antizyme than the non-GTP-activatable brain ODC or the kidney ODC. The irreversible inhibitor of ODC, alpha-difluoromethylornithine (DFMO), inhibited approx. 60% of the ODC activity of all brain regions, whereas kidney ODC was inhibited totally by DFMO. When extracts of brain and kidney were incubated at 55 degrees C, kidney ODC was rapidly inactivated, but brain ODC was more heat-stable. Brain ODC, but not kidney ODC, was activated by GTP and ATP, and also by their deoxy forms. The K1/2 for activation of the enzyme was 2 microM for GTP and 40 microM for ATP. Using partially purified brain ODC, the activation by GTP was irreversible. These results demonstrate for the first time that the GTP-activatable ODC exists in the brain and is associated with the antizyme. The possible mechanisms of activation by GTP, the significance of this finding for the regulation of brain ODC, and the similarities to and differences from the GTP-activatable ODC found in certain rodent and human tumours are all discussed.


Sign in / Sign up

Export Citation Format

Share Document