Pathogenic role of anti-endothelial cell antibodies in autoimmune rheumatic diseases

Lupus ◽  
2009 ◽  
Vol 18 (13) ◽  
pp. 1233-1238 ◽  
Author(s):  
DS Domiciano ◽  
JF Carvalho ◽  
Y. Shoenfeld

Anti-endothelial cells antibodies have been detected in numerous autoimmune and inflammatory diseases, including systemic lupus erythematous, rheumatoid arthritis, vasculitis and sarcoidosis. Anti-endothelial cells antibodies bind to endothelial cell antigens and induce endothelial damage. Their effects on the endothelial cell have been considered responsible, at least in part, by the vascular injury which occurs in these pathological conditions.

Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Zane S. Kaplan ◽  
Shaun P. Jackson

Abstract Platelets have evolved highly specialized adhesion mechanisms that enable cell-matrix and cell-cell interactions throughout the entire vasculature irrespective of the prevailing hemodynamic conditions. This unique property of platelets is critical for their ability to arrest bleeding and promote vessel repair. Platelet adhesion under conditions of high shear stress, as occurs in stenotic atherosclerotic arteries, is central to the development of arterial thrombosis; therefore, precise control of platelet adhesion must occur to maintain blood fluidity and to prevent thrombotic or hemorrhagic complications. Whereas the central role of platelets in hemostasis and thrombosis has long been recognized and well defined, there is now a major body of evidence supporting an important proinflammatory function for platelets that is linked to host defense and a variety of autoimmune and inflammatory diseases. In the context of the vasculature, experimental evidence indicates that the proinflammatory function of platelets can regulate various aspects of the atherosclerotic process, including its initiation and propagation. The mechanisms underlying the proatherogenic function of platelets are increasingly well defined and involve specific adhesive interactions between platelets and endothelial cells at atherosclerotic-prone sites, leading to the enhanced recruitment and activation of leukocytes. Through the release of chemokines, proinflammatory molecules, and other biological response modulators, the interaction among platelets, endothelial cells, and leukocytes establishes a localized inflammatory response that accelerates atherosclerosis. These inflammatory processes typically occur in regions of the vasculature experiencing low shear and perturbed blood flow, a permissive environment for leukocyte-platelet and leukocyte-endothelial interactions. Therefore, the concept has emerged that platelets are a central element of the atherothrombotic process and that future therapeutic strategies to combat this disease need to take into consideration both the prothrombotic and proinflammatory function of platelets.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


2021 ◽  
pp. 1-9
Author(s):  
Rima Dardik ◽  
Ophira Salomon

Intracranial hemorrhage (ICH) associated with fetal/neonatal alloimmune thrombocytopenia (FNAIT) is attributed mainly to endothelial damage caused by binding of maternal anti-HPA-1a antibodies to the αvβ3 integrin on endothelial cells (ECs). We examined the effect of anti-HPA-1a antibodies on EC function using 2 EC lines from different vascular beds, HMVEC of dermal origin and hCMEC/D3 of cerebral origin. Anti-HPA-1a sera significantly increased apoptosis in both HMVEC and hCMEC/D3 cells and permeability in hCMEC/D3 cells only. This increase in both apoptosis and permeability was significantly inhibited by a monoclonal anti-β3 antibody (SZ21) binding to the HPA-1a epitope. Our results indicate that (1) maternal anti-HPA-1a antibodies impair EC function by increasing apoptosis and permeability and (2) ECs from different vascular beds vary in their susceptibility to pathological effects elicited by maternal anti-HPA-1a antibodies on EC permeability. Examination of maternal anti-HPA-1a antibodies for their effect on EC permeability may predict potential ICH associated with FNAIT.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1843-1850 ◽  
Author(s):  
E Arnaud ◽  
M Lafay ◽  
P Gaussem ◽  
V Picard ◽  
M Jandrot-Perrus ◽  
...  

Abstract An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion- binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration- dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma- thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion- binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Lehmann ◽  
S. Islam ◽  
S. Jarosch ◽  
J. Zhou ◽  
D. Hoskin ◽  
...  

Since iron can contribute to detrimental radical generating processes through the Fenton and Haber-Weiss reactions, it seems to be a reasonable approach to modulate iron-related pathways in inflammation. In the human organism a counterregulatory reduction in iron availability is observed during inflammatory diseases. Under pathological conditions with reduced or increased baseline iron levels different consequences regarding protection or susceptibility to inflammation have to be considered. Given the role of iron in development of inflammatory diseases, pharmaceutical agents targeting this pathway promise to improve the clinical outcome. The objective of this review is to highlight the mechanisms of iron regulation and iron chelation, and to demonstrate the potential impact of this strategy in the management of several acute and chronic inflammatory diseases, including cancer.


1996 ◽  
Vol 270 (6) ◽  
pp. L973-L978 ◽  
Author(s):  
A. Siflinger-Birnboim ◽  
H. Lum ◽  
P. J. Del Vecchio ◽  
A. B. Malik

We studied the role of Ca2+ in mediating the hydrogen peroxide (H2O2)-induced increase in endothelial permeability to 125I-labeled albumin using bovine pulmonary microvessel endothelial cells (BMVEC). Changes in cytosolic-free Ca2+ ([Ca2+]i) were monitored in BMVEC monolayers loaded with the Ca(2+)-sensitive membrane permeant fluorescent dye fura 2-AM. H2O2 (100 microM) produced a rise in [Ca2+]i within 10 s that was reduced by the addition of EGTA to the medium. Uptake of 45Ca2+ from the extracellular medium increased in the presence of H2O2 (100 microM) compared with control monolayers, suggesting that the H2O2-induced rise in [Ca2+]i is partly the result of extracellular Ca2+ influx. The effects of [Ca2+]i on endothelial permeability were addressed by pretreatment of BMVEC monolayers with BAPTA-AM (3-5 microM), a membrane permeant Ca2+ chelator, before the H2O2 exposure. BAPTA-AM produced an approximately 50% decrease in the H2O2-induced increase in endothelial permeability compared with endothelial cell monolayers exposed to H2O2 alone. The increase in endothelial permeability was independent of Ca2+ influx, since LaCl3 (0-100 microM), which displaces Ca2+ from binding sites on the cell surface, did not modify the permeability response. These results indicate that the rise in [Ca2+]i produced by H2O2 is a critical determinant of the increase in endothelial permeability.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhimin Zhang ◽  
Mingzhu Lv ◽  
Xiang Wang ◽  
Zheng Zhao ◽  
Daolong Jiang ◽  
...  

Abstract Background The oncogenic role of the newly identified lncRNA LUADT1 has been revealed in lung adenocarcinoma. It was reported that LUADT1 plays a critical role in multiple human diseases. This study was carried out to investigate the role of LUADT1 in sepsis. Methods Sixty patients with sepsis and sixty healthy volunteers were recruited for this study. Plasma samples were collected from all participants. Human primary coronary artery endothelial cells were also used in this study. The expression of Pim-1, miR-195 and LUADT1 were detected by RT-qPCR. The interaction between miR-195 and LUADT1 was determined by overexpression experiments and luciferase activity assay. Cell apoptosis was detected by flow cytometry. The expression of apoptosis-related protein was detected by Western blotting. Results Bioinformatics analysis revealed the potential interaction between LUADT1 and miR-195, which was confirmed by dual luciferase reporter assay. LUADT1 was downregulated in patients with sepsis. Moreover, LPS treatment downregulated the expression of LUADT1 in primary cardiac endothelial cells. Overexpression of LUADT1 and miR-195 did not affect the expression of each other in primary cardiac endothelial cells. Interestingly, overexpression of LUADT1 was found to upregulate the expression of Pim-1, a target of miR-195. In addition, it was found that overexpression of LUADT1 and Pim-1 reduced the enhancement effects of miR-195 on LPS-induced cardiac endothelial cell apoptosis. Conclusion In summary, LUADT1 may protect cardiac endothelial cells against apoptosis in sepsis by regulating the miR-195/Pim-1 axis.


Sign in / Sign up

Export Citation Format

Share Document