Investigation of Graphite Nano Particle Addition on the Physical and Mechanical Properties of ZA27 Composites

2016 ◽  
Vol 25 (2) ◽  
pp. 096369351602500 ◽  
Author(s):  
R. Dalmis ◽  
H. Cuvalci ◽  
A. Canakci ◽  
O. Guler

The physical and mechanical properties of composites consisting of ZA27 alloy reinforced with nano-sized graphite particles were investigated with the main objective of understanding the effect of the nano particulate reinforcement. These properties were determined by measuring the density, hardness and tensile strength values. The microstructure of the ZA27-Graphite (Gr) nanocomposites was investigated using a scanning electron microscope (SEM). The results indicated that density values of nano graphite added nanocomposites (GANs) decrease with increasing graphite rate while porosity ratio increases. Also the UTS and Brinell hardness values decreased with increasing graphite content.

2016 ◽  
Vol 677 ◽  
pp. 186-190 ◽  
Author(s):  
Monika Čáchová ◽  
Eva Vejmelková ◽  
Kateřina Šestáková ◽  
Pavel Reiterman ◽  
Martin Keppert ◽  
...  

This article is focused on cement based composites. Two cements differing in mineralogical composition are utilised as main binder in composites mixtures. Results of measured physical parameters of studied materials are presented. For the sake of comparison, a reference material with Portland cement was also prepared. Basic physical properties (measured by water vacuum saturation method and by helium pycnometry), characterizations of pore system (determined by mercury porosimetry) and mechanical properties are the matter of this study. Composites show various open porosity; the results of open porosity of materials containing special cements show higher values, in comparison with composite based on Portland cement. This fact of course influences other material characteristics - mainly mechanical properties.


2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2018 ◽  
Vol 49 ◽  
pp. 00010 ◽  
Author(s):  
Przemysław Brzyski ◽  
Grzegorz Łagód

One of the objectives of sustainable development in construction is the use of low-processed materials. They have a positive impact on the ecological balance of the building throughout the entire life cycle. Examples of such materials are materials of plant origin - straw, shives, cellulose fibers. They are used as thermal insulation or wall material. In recent years, hemp shives are increasingly used as a component of a lime-based composite, which performs the function of wall filling in timber frame constructions. The shives, due to the high porosity, determine the high thermal insulation properties of the composite. The physico-mechanical properties of the composite can be modified depending on various factors, including the ratio of hemp shives to the binder. The lime binder, in turn, can be modified by hydraulic and pozzolan additives. The paper presents mechanical properties (compressive and flexural strength) as well as physical properties (density, porosity, thermal conductivity coefficient, absorbability) of composites with various proportions of hemp shives of the Bialobrzeskie variety to the lime binder modified with Portland cement and metakaolinite.


2019 ◽  
Vol 969 ◽  
pp. 122-127
Author(s):  
B.N. Anjan ◽  
G.V. Preetham Kumar

Zinc aluminum based matrix composites reinforced with SiC and Al2O3 particles have significant applications in the automobile field. Stir casting method followed by squeeze process was used for fabrication. ZA27 composites reinforced with SiC and Al2O3 particles (20-50µm) in various weight percentage (wt%) ranges from 0-10 in a step of 5 each was fabricated. OM, SEM and EDS analysis of microstructures obtained for matrix alloy and reinforced composites were performed in order to know the effect of varying wt% on physical and mechanical properties of composites. Squeeze casting technique shows better features such as fine microstructure as a result of low porosity and good bonding between matrix and reinforcement. Addition of reinforcements decreased the densities of matrix alloy. SiC reinforced composites showed better results as compared with Al2O3 reinforced ones. Hardness and ultimate tensile strength value of 10 wt% reinforced composites showed improved results.


2016 ◽  
Vol 59 (3) ◽  
pp. 435-441 ◽  
Author(s):  
G. V. Sakovich ◽  
S. A. Vorozhtsov ◽  
A. B. Vorozhtsov ◽  
A. I. Potekaev ◽  
S. N. Kulkov

2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Lívia Cássia Viana ◽  
Graciela Ines Bolzon de Muñiz ◽  
Washington Luiz Esteves Magalhães ◽  
Alan Sulato de Andrade ◽  
Silvana Nisgoski ◽  
...  

ABSTRACT This study investigates the physical and mechanical properties of nanostructured films produced from Pinus sp. kraft pulp. To obtain the nanocellulose, the bleached kraft pulp was submitted to six different grinding regimes: two, five, ten, 20, 30, and 40 passes through the grinder. The influence of the number of passes was evaluated through the films’ physical and mechanical properties. The results show that the nanofibers reduced the thickness and considerably increased the density values of the fabricated films. The tensile strength increased more than 300% and the burst index was ten times higher in relation to normal papers. The more compact structure and lower porosity caused by the larger contact surface between nanofibers in the nanostructured films resulted in higher values of density, tensile strength, and burst resistance.


2014 ◽  
Vol 4 (4) ◽  
Author(s):  
Janis Kajaks ◽  
Karlis Kalnins ◽  
Sandris Uzulis ◽  
Juris Matvejs

AbstractWood polymer composites (WPC) are widely used materials in different industries because of many application, processing and recycling advantages compared to traditional thermoplastic polymer composites containing mineral fillers [1]. However, the commercial success of these materials primarily depends on improvements in moisture performance, and ability to use recycled and waste material as a wood filler. The research regarding WPC is focused on the chemical interaction between dissimilar material components with an aim to provide strong adhesion to the surface of wood filler-polymer matrix [2]. The goal of this paper was to present results of investigations of exploitation properties of composites containing different plywood production industry byproducts and polypropylene. It was shown that modification of all composites with coupling agent maleated polypropylene (MAPP) considerably improve physical mechanical properties (tensile, flexural, impact strength) of WPC. MAPP (5 wt.%) additions also significantly improve water resistance of WPC. SEM investigations confirmed positive action of interfacial modifiers on strengthening of adhesion interaction between components wood and PP matrix that give considerable increase of exploitation properties of the WPC.


2014 ◽  
Vol 11 (2) ◽  
pp. 139-146
Author(s):  
Anna Porąbka ◽  
Vasiliki-Maria Archodoulaki ◽  
Wolfgang Molnar ◽  
Jadwiga Laska

Two series of polyurethane matrix composites were prepared. As generally resistant to wear, the PUs can be used as matrices for wear protective and load-bearing composites. The objective of this study was to compare the mechanical properties of composites containing 5% vol. of selected ceramic particles, and unmodified PUs. The effect of various particles on physical and mechanical properties was studied. The results showed that the mechanical properties changed compared to reference materials: modulus improved in certain materials and in different temperatures, revealing the favourable influence of FA and SiO2 particles. In turn, Rm and wear resistance decreased with the type and shape of filler.


2021 ◽  
pp. 002199832110157
Author(s):  
Müslim Çelebi ◽  
Onur Güler ◽  
Aykut Çanakçı ◽  
Hamdullah Çuvalcı

In this study, ZA27-Al2O3-Gr hybrid nanocomposite materials (HNMs) were prepared by powder metallurgy method including mechanical-milling and hot-pressing (HP). The physical and mechanical properties of ZA27-Al2O3-Gr HNMs have been investigated with the primary objective of understanding the influence of the alumina (Al2O3) nanoparticle (n-Al2O3) reinforcement. The density, hardness and tensile strength tests of HNMs carried out to determine the physical and mechanical properties of ZA27-Al2O3-Gr HNMs. Scanning Electron Microscope (SEM) is used for the microstructural evolution of the HNMs. As a result of microstructure examination results, n-Al2O3 were observed around grain boundary while the graphite (Gr) nanoparticles (n-Gr) were dispersed homogeneous throughout ZA27 matrix. Relative density values decreased with the increase of nanoparticle reinforcement ratio from 1%vol to 4%vol., while an increase in porosity values was detected for HNMs. Moreover, the results showed that the addition of n-Al2O3 significantly improved the mechanical properties of the HNMs. Additionally, the HNMs reinforced with 4%vol. n-Al2O3 and 1%vol. n-Gr exhibited the highest tensile strength of about 158 MPa and hardness of 160 HB in comparison with the other HNMs reinforced with different content of n-Al2O3.


Sign in / Sign up

Export Citation Format

Share Document