Basic Physical and Mechanical Properties of Composites Based on Three Different Cements

2016 ◽  
Vol 677 ◽  
pp. 186-190 ◽  
Author(s):  
Monika Čáchová ◽  
Eva Vejmelková ◽  
Kateřina Šestáková ◽  
Pavel Reiterman ◽  
Martin Keppert ◽  
...  

This article is focused on cement based composites. Two cements differing in mineralogical composition are utilised as main binder in composites mixtures. Results of measured physical parameters of studied materials are presented. For the sake of comparison, a reference material with Portland cement was also prepared. Basic physical properties (measured by water vacuum saturation method and by helium pycnometry), characterizations of pore system (determined by mercury porosimetry) and mechanical properties are the matter of this study. Composites show various open porosity; the results of open porosity of materials containing special cements show higher values, in comparison with composite based on Portland cement. This fact of course influences other material characteristics - mainly mechanical properties.

2020 ◽  
Vol 322 ◽  
pp. 01001
Author(s):  
Dana Konakova ◽  
Eva Vejmelkova ◽  
Lenka Scheinherrova ◽  
Martin Keppert ◽  
An Cheng ◽  
...  

Basic physical and mechanical properties of several cement composites are determined as functions of thermal load and the results are compared with reference materials. Bulk density, matrix density, and open porosity are measured using the water vacuum saturation method. Compressive and bending strengths are determined according to the European standard. High-temperature coefficient of thermal expansion is obtained using a comparative measurement. Experimental results show that composites based on Portland cement do not resist high temperatures well. Their applicability is limited to 400 °C, due to the damage caused by hydrates decomposition. On the other hand, composites based on calcium aluminate cement exhibit a better thermal stability and retain residual strength even after being exposed to 1000 °C.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1543
Author(s):  
Francisca Guadalupe Cabrera-Covarrubias ◽  
José Manuel Gómez-Soberón ◽  
Carlos Antonio Rosas-Casarez ◽  
Jorge Luis Almaral-Sánchez ◽  
Jesús Manuel Bernal-Camacho

The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.


Author(s):  
V. I. Khirkhasova ◽  

The paper deals with modification of cement composite and concrete with nanocellulose in low and high density. The author presents the study results of the influence of nanocellulose on the cement composite hardening process, as well as the physical and mechanical properties of heavy concrete. The influence of the used additive on the rheological and strength characteristics of concrete is revealed. A new method is proposed to improve the material performance.


2020 ◽  
Vol 6 (11) ◽  
pp. 84929-84951
Author(s):  
Luccas Mansur Feuchard ◽  
Cléo Márcio de Araújo Santana ◽  
Eliane Fernandes Côrtes Pires ◽  
Fernando Luiz Barbuda de Abreu ◽  
Elie Chahdan Mounzer ◽  
...  

2019 ◽  
Vol 09 (04) ◽  
pp. 327-337
Author(s):  
Asal Soltani ◽  
Salim Khoso ◽  
Manthar Ali Keerio ◽  
Antonio Formisano

2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2011 ◽  
Vol 324 ◽  
pp. 388-391 ◽  
Author(s):  
Zbyšek Pavlík ◽  
Eva Vejmelková ◽  
Milena Pavlíková ◽  
Martin Keppert ◽  
Robert Černý

Basic physical properties, pore size distribution and hygric properties of several types of stones which are used in reconstructions of historical buildings on the territory of the Czech Republic, namely several types of sandstone and argillite, are investigated. Basic physical characteristics are measured using the water vacuum saturation method, pore distribution by mercury porosimetry. Values of water absorption coefficient and apparent moisture diffusivity are determined by methods utilizing the results of water sorptivity measurements. Water vapor transport properties are accessed by the cup method. The obtained data represents valuable information for the application of studied materials in reconstructions and renewal of historical buildings.


2018 ◽  
Vol 49 ◽  
pp. 00010 ◽  
Author(s):  
Przemysław Brzyski ◽  
Grzegorz Łagód

One of the objectives of sustainable development in construction is the use of low-processed materials. They have a positive impact on the ecological balance of the building throughout the entire life cycle. Examples of such materials are materials of plant origin - straw, shives, cellulose fibers. They are used as thermal insulation or wall material. In recent years, hemp shives are increasingly used as a component of a lime-based composite, which performs the function of wall filling in timber frame constructions. The shives, due to the high porosity, determine the high thermal insulation properties of the composite. The physico-mechanical properties of the composite can be modified depending on various factors, including the ratio of hemp shives to the binder. The lime binder, in turn, can be modified by hydraulic and pozzolan additives. The paper presents mechanical properties (compressive and flexural strength) as well as physical properties (density, porosity, thermal conductivity coefficient, absorbability) of composites with various proportions of hemp shives of the Bialobrzeskie variety to the lime binder modified with Portland cement and metakaolinite.


Sign in / Sign up

Export Citation Format

Share Document