scholarly journals Your Brain Is Not an Onion With a Tiny Reptile Inside

2020 ◽  
Vol 29 (3) ◽  
pp. 255-260
Author(s):  
Joseph Cesario ◽  
David J. Johnson ◽  
Heather L. Eisthen

A widespread misconception in much of psychology is that (a) as vertebrate animals evolved, “newer” brain structures were added over existing “older” brain structures, and (b) these newer, more complex structures endowed animals with newer and more complex psychological functions, behavioral flexibility, and language. This belief, although widely shared in introductory psychology textbooks, has long been discredited among neurobiologists and stands in contrast to the clear and unanimous agreement on these issues among those studying nervous-system evolution. We bring psychologists up to date on this issue by describing the more accurate model of neural evolution, and we provide examples of how this inaccurate view may have impeded progress in psychology. We urge psychologists to abandon this mistaken view of human brains.

2019 ◽  
Author(s):  
Joseph Cesario ◽  
David Jeffrey Johnson ◽  
Heather Eisthen

A widespread misconception in much of psychology holds that (1) as vertebrate animals evolved, "newer" brain structures were added over existing "older" brain structures and (2) these newer, more complex structures endowed animals with newer and more complex psychological functions, behavioral flexibility, and language. This belief, though widely shared in our introductory textbooks, has long been discredited among neurobiologists and stands in contrast to the clear and unanimous agreement on these issues among those studying nervous system evolution. We bring psychologists up to date on this issue by describing the more accurate model of neural evolution, and we provide examples of how this inaccurate view may have impeded progress in psychology. We urge psychologists to abandon this mistaken view of human brains.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mingxue Ma ◽  
Yao Ni ◽  
Zirong Chi ◽  
Wanqing Meng ◽  
Haiyang Yu ◽  
...  

AbstractThe ability to emulate multiplexed neurochemical transmission is an important step toward mimicking complex brain activities. Glutamate and dopamine are neurotransmitters that regulate thinking and impulse signals independently or synergistically. However, emulation of such simultaneous neurotransmission is still challenging. Here we report design and fabrication of synaptic transistor that emulates multiplexed neurochemical transmission of glutamate and dopamine. The device can perform glutamate-induced long-term potentiation, dopamine-induced short-term potentiation, or co-release-induced depression under particular stimulus patterns. More importantly, a balanced ternary system that uses our ambipolar synaptic device backtrack input ‘true’, ‘false’ and ‘unknown’ logic signals; this process is more similar to the information processing in human brains than a traditional binary neural network. This work provides new insight for neuromorphic systems to establish new principles to reproduce the complexity of a mammalian central nervous system from simple basic units.


2016 ◽  
Vol 26 (20) ◽  
pp. R1101-R1108 ◽  
Author(s):  
Irving E. Wang ◽  
Thomas R. Clandinin

2001 ◽  
Vol 75 (17) ◽  
pp. 8268-8282 ◽  
Author(s):  
Seng-Thuon Khuth ◽  
Hideo Akaoka ◽  
Axel Pagenstecher ◽  
Olivier Verlaeten ◽  
Marie-Françoise Belin ◽  
...  

ABSTRACT Viral infection of the central nervous system (CNS) can result in perturbation of cell-to-cell communication involving the extracellular matrix (ECM). ECM integrity is maintained by a dynamic balance between the synthesis and proteolysis of its components, mainly as a result of the action of matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). An MMP/TIMP imbalance may be critical in triggering neurological disorders, in particular in virally induced neural disorders. In the present study, a mouse model of brain infection using a neurotropic strain of canine distemper virus (CDV) was used to study the effect of CNS infection on the MMP/TIMP balance and cytokine expression. CDV replicates almost exclusively in neurons and has a unique pattern of expression (cortex, hypothalamus, monoaminergic nuclei, hippocampus, and spinal cord). Here we show that although several mouse brain structures were infected, they exhibited a differential pattern in terms of MMP, TIMP, and cytokine expression, exemplified by (i) a large increase in pro-MMP9 levels, in particular in the hippocampus, which occurred mainly in neurons and was associated with in situ gelatinolytic activity, (ii) specific and significant upregulation of MT1-MMP mRNA expression in the cortex and hypothalamus, (iii) an MMP/TIMP imbalance, suggested by the upregulation of TIMP-1 mRNA in the cortex, hippocampus, and hypothalamus and of TIMP-3 mRNA in the cortex, and (iv) a concomitant region-specific large increase in expression of Th1-like cytokines, such as gamma interferon, tumor necrosis factor alpha, and interleukin 6 (IL-6), contrasting with weaker induction of Th2-like cytokines, such as IL-4 and IL-10. These data indicate that an MMP/TIMP imbalance in specific brain structures, which is tightly associated with a local inflammatory process as shown by the presence of immune infiltrating cells, differentially impairs CNS integrity and may contribute to the multiplicity of late neurological disorders observed in this viral mouse model.


2021 ◽  
Vol 40 (4) ◽  
pp. 13-24
Author(s):  
Igor V. Litvinenko ◽  
Igor V. Krasakov

The involvement of the nervous system in the pathological process that occurs when COVID-19 is infected is becoming more and more obvious. The question of the possibility of the debut or progression of the already developed Parkinsonism syndrome in patients who have undergone COVID-19 is regularly raised. A large number of hypotheses are put forward to explain this relationship. It is assumed that a violation of iron metabolism in the brain may underlie the development and progression of neurodegenerative diseases, including after the new coronavirus infection SARS-CoV-2. The analysis of stu dies on the possible influence of iron metabolism disorders on the occurrence and mechanism of development of neurodegenerative diseases after infection with SARS-CoV-2 has been carried out. The processes of physiological maintenance of iron homeostasis, as well as the influence of physiological aging on the accumulation of iron in the central nervous system are described. The relationship between hyperferritinemia occurring in COVID-19 and ferroptosis as the basis of the neurodegenerative process in Parkinsons disease and Alzheimers disease is discussed. The main molecular mechanisms involved in ferroptosis are described. Examples of involvement of metal homeostasis disorders in the process of altering the structure of -synuclein, synthesis of -amyloid, hyperphosphorylated tau- protein are given. The causes of excessive iron accumulation in certain brain structures are discussed. The question of the possibility of using the assessment of changes in iron metabolism as a new biomarker of the progression of Parkinsons disease is analyzed. (1 figure, bibliography: 62 refs)


2021 ◽  
Author(s):  
Song-Lin Ding ◽  
Joshua J. Royall ◽  
Phil Lesnar ◽  
Benjamin A.C. Facer ◽  
Kimberly A. Smith ◽  
...  

Increasing interest in studies of prenatal human brain development, particularly using new single-cell genomics and anatomical technologies to create cell atlases, creates a strong need for accurate and detailed anatomical reference atlases. In this study, we present two cellular-resolution digital anatomical atlases for prenatal human brain at post-conceptional weeks (PCW) 15 and 21. Both atlases were annotated on sequential Nissl-stained sections covering brain-wide structures on the basis of combined analysis of cytoarchitecture, acetylcholinesterase staining and an extensive marker gene expression dataset. This high information content dataset allowed reliable and accurate demarcation of developing cortical and subcortical structures and their subdivisions. Furthermore, using the anatomical atlases as a guide, spatial expression of 37 and 5 genes from the brains respectively at PCW 15 and 21 was annotated, illustrating reliable marker genes for many developing brain structures. Finally, the present study uncovered several novel developmental features, such as the lack of an outer subventricular zone in the hippocampal formation and entorhinal cortex, and the apparent extension of both cortical (excitatory) and subcortical (inhibitory) progenitors into the prenatal olfactory bulb. These comprehensive atlases provide useful tools for visualization, targeting, imaging and interpretation of brain structures of prenatal human brain, and for guiding and interpreting the next generation of cell census and connectome studies.


Author(s):  
S. Goncharevskyi ◽  
V. Martynyuk

The main aim of our research was to study the temperature variation of representative are a soft the cranial part of the autonomic nervous system of the human skin during the day. The temperature of representative are a soft the thoracic autonomic nervous system we measured by infrared thermometer (Medisana FTO D-53340, with anaccuracy of 0.1 degree Celsius). During the study identified minimums and maximums temperatures for representative are as during the day: the hypothalamus – 13 (maximum), 3 (minimum) an hour, midbrain – 15 (maximum), 5 (minimum) an hour, pons- not found, the medulla oblongata – 9, 15 (maximum), 3.21 (minimum) an hour, the vagus nerve (right side) – 15 (maximum), 5 (at least) an hour, the vagus nerve (left side) – 15 (maximum), 21 (minimum) an hour. The presence of minimums and maximums temperature in representative areas indicates different activity related to their brain structures.


2015 ◽  
Vol 370 (1684) ◽  
pp. 20150181 ◽  
Author(s):  
Gáspár Jékely ◽  
Fred Keijzer ◽  
Peter Godfrey-Smith

The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input–output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems.


2020 ◽  
Vol 28 (6) ◽  
pp. 675-684 ◽  
Author(s):  
Shahul Mujib Kamal ◽  
Norazryana Binti Mat Dawi ◽  
Sue Sim ◽  
Rui Tee ◽  
Visvamba Nathan ◽  
...  

BACKGROUND: Walking is one of the important actions of the human body. For this purpose, the human brain communicates with leg muscles through the nervous system. Based on the walking path, leg muscles act differently. Therefore, there should be a relation between the activity of leg muscles and the path of movement. OBJECTIVE: In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement. METHOD: Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content. RESULTS: Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path. CONCLUSION: The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.


Parasitology ◽  
1996 ◽  
Vol 113 (S1) ◽  
pp. S47-S72 ◽  
Author(s):  
D. W. Halton ◽  
M. K. S. Gustafsson

SUMMARYAs the most primitive metazoan phylum, the Platyhelminthes occupies a unique position in nervous system evolution. Centrally, their nervous system consists of an archaic brain from which emanate one or more pairs of longitudinal nerve cords connected by commissures; peripherally, a diverse arrangement of nerve plexuses of varying complexity innervate the subsurface epithelial and muscle layers, and in the parasitic taxa they are most prominent in the musculature of the attachment organs and egg-forming apparatus. There is a range of neuronal-cell types, the majority being multi- and bipolar. The flatworm neuron is highly secretory and contains a heterogeneity of vesicular inclusions, dominated by densecored vesicles, whose contents may be released synaptically or by paracrine secretion for presumed delivery to target cells via the extracellular matrix. A wide range of sense organ types is present in flatworms, irrespective of life-styles. The repertoire of neuronal substances identified cytochemically includes all of the major candidate transmitters known in vertebrates. Two groups of native flatworm neuropeptides have been sequenced, neuropeptide F and FMRFamide-related peptides (FaRPs), and immunoreactivities for these have been localised in dense-cored neuronal vesicles in representatives of all major fiatworm groups. There is evidence of co-localisation of peptidergic and cholinergic elements; serotoninergic components generally occupy a separate set of neurons. The actions of neuronal substances in flatworms are largely undetermined, but FaRPs and 5-HT are known to be myoactive in all of the major groups, and there is immuno-cytochemical evidence that they have a role in the mechanism of egg assembly.


Sign in / Sign up

Export Citation Format

Share Document