Evaluation of wood variation based on the eigenvalue distribution of near infrared spectral matrix

2018 ◽  
Vol 27 (2) ◽  
pp. 175-180 ◽  
Author(s):  
Takaaki Fujimoto

A method to evaluate the wood variation based on the eigenvalue analysis for the near infrared spectral matrix is presented. The set of eigenvalues calculated from the variance-covariance matrix is treated as the Hamiltonian, which represents the energy eigenstate of the wood, and the wood variation is discussed from the viewpoints of thermodynamics and statistical mechanics. To determine the validity of this idea, two sample groups, one having a high and the other having a low modulus of elasticity ( Efr), are prepared, because they obviously have different molecular configurations in the cell wall. The eigenvalues of the high Efr group are widely distributed compared with those of the low Efr group. The probability corresponding to each energy eigenstate of the low Efr group is flatly distributed compared with that of the high Efr group. These results indicate that the low Efr wood has a more disordered structure than the high Efr wood. The Helmholtz free energy is higher in the high Efr group; in contrast, the entropy is higher in the low Efr group. The results obtained in this study are consistent with the previous knowledge with regard to the relationship between the mechanical properties and the microscopic structure of wood. Hence, the eigenvalues obtained from the NIR spectral matrix provide useful information to assess the variation and stability of wood.

2018 ◽  
Vol 26 (3) ◽  
pp. 169-185
Author(s):  
Sharon Nielsen ◽  
Kenneth G Russell ◽  
Alison Kelly ◽  
Glen Fox

Near infrared spectra are highly correlated, complex and noisy, and potentially have many more predictor variables than are required to estimate a parsimonious calibration equation. It is difficult to appreciate the implication of pre-processing choices that are made during calibration, especially in connection with the relationship between the transformed data and the reference values. Graphical methods can be used to understand these relationships better and decisions made during the calibration process can be based on the data alone. In this paper, new graphical tools are introduced to help the researcher better understand these complex relationships in the data. When combined with the proposed algorithm to explore spectra in relation to calibration, these tools enable a parsimonious calibration model to be formed. The results from two different (diesel and wheat) near infrared spectra show that it is possible to form successful calibration equations based on the proposed algorithm, which includes the two new graphical tools. There is a high level of correlation between the results of the different transformations considered, suggesting that in terms of parsimony, developing a calibration using the raw spectra could provide the most judicious outcome.


JETP Letters ◽  
2020 ◽  
Vol 112 (1) ◽  
pp. 31-36
Author(s):  
V. I. Kukushkin ◽  
V. E. Kirpichev ◽  
E. N. Morozova ◽  
V. V. Solov’ev ◽  
Ya. V. Fedotova ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Songlin Yue ◽  
Yanyu Qiu ◽  
Pengxian Fan ◽  
Pin Zhang ◽  
Ning Zhang

Analogue material with appropriate properties is of great importance to the reliability of geomechanical model test, which is one of the mostly used approaches in field of geotechnical research. In this paper, a new type of analogue material is developed, which is composed of coarse aggregate (quartz sand and/or barite sand), fine aggregate (barite powder), and cementitious material (anhydrous sodium silicate). The components of each raw material are the key influencing factors, which significantly affect the physical and mechanical parameters of analogue materials. In order to establish the relationship between parameters and factors, the material properties including density, Young’s modulus, uniaxial compressive strength, and tensile strength were investigated by a series of orthogonal experiments with hundreds of samples. By orthogonal regression analysis, the regression equations of each parameter were obtained based on experimental data, which can predict the properties of the developed analogue materials according to proportions. The experiments and applications indicate that sodium metasilicate cemented analogue material is a type of low-strength and low-modulus material with designable density, which is insensitive to humidity and temperature and satisfies mechanical scaling criteria for weak rock or soft geological materials. Moreover, the developed material can be easily cast into structures with complex geometry shapes and simulate the deformation and failure processes of prototype rocks.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1011
Author(s):  
Dimitre Z. Dimitrov ◽  
Zih Fan Chen ◽  
Vera Marinova ◽  
Dimitrina Petrova ◽  
Chih Yao Ho ◽  
...  

In this work, highly conductive Al-doped ZnO (AZO) films are deposited on transparent and flexible muscovite mica substrates by using the atomic layer deposition (ALD) technique. AZO-mica structures possess high optical transmittance at visible and near-infrared spectral range and retain low electric resistivity, even after continuous bending of up to 800 cycles. Structure performances after bending tests have been supported by atomic force microscopy (AFM) analysis. Based on performed optical and electrical characterizations AZO films on mica are implemented as transparent conductive electrodes in flexible polymer dispersed liquid crystal (PDLC) devices. The measured electro-optical characteristics and response time of the proposed devices reveal the higher potential of AZO-mica for future ITO-free flexible optoelectronic applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Bittante ◽  
Simone Savoia ◽  
Alessio Cecchinato ◽  
Sara Pegolo ◽  
Andrea Albera

AbstractSpectroscopic predictions can be used for the genetic improvement of meat quality traits in cattle. No information is however available on the genetics of meat absorbance spectra. This research investigated the phenotypic variation and the heritability of meat absorbance spectra at individual wavelengths in the ultraviolet–visible and near-infrared region (UV–Vis-NIR) obtained with portable spectrometers. Five spectra per instrument were taken on the ribeye surface of 1185 Piemontese young bulls from 93 farms (13,182 Herd-Book pedigree relatives). Linear animal model analyses of 1481 single-wavelengths from UV–Vis-NIRS and 125 from Micro-NIRS were carried out separately. In the overlapping regions, the proportions of phenotypic variance explained by batch/date of slaughter (14 ± 6% and 17 ± 7%,), rearing farm (6 ± 2% and 5 ± 3%), and the residual variances (72 ± 10% and 72 ± 5%) were similar for the UV–Vis-NIRS and Micro-NIRS, but additive genetics (7 ± 2% and 4 ± 2%) and heritability (8.3 ± 2.3% vs 5.1 ± 0.6%) were greater with the Micro-NIRS. Heritability was much greater for the visible fraction (25.2 ± 11.4%), especially the violet, blue and green colors, than for the NIR fraction (5.0 ± 8.0%). These results allow a better understanding of the possibility of using the absorbance of visible and infrared wavelengths correlated with meat quality traits for the genetic improvement in beef cattle.


Data in Brief ◽  
2021 ◽  
Vol 36 ◽  
pp. 106976
Author(s):  
Aapo Ristaniemi ◽  
Jari Torniainen ◽  
Tommi Paakkonen ◽  
Lauri Stenroth ◽  
Mikko A.J. Finnilä ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 4017
Author(s):  
Yongjun Guo ◽  
Yuhao Guo ◽  
Chunshu Li ◽  
Hao Zhang ◽  
Xiaoyan Zhou ◽  
...  

Integrated optical phased arrays can be used for beam shaping and steering with a small footprint, lightweight, high mechanical stability, low price, and high-yield, benefiting from the mature CMOS-compatible fabrication. This paper reviews the development of integrated optical phased arrays in recent years. The principles, building blocks, and configurations of integrated optical phased arrays for beam forming and steering are presented. Various material platforms can be used to build integrated optical phased arrays, e.g., silicon photonics platforms, III/V platforms, and III–V/silicon hybrid platforms. Integrated optical phased arrays can be implemented in the visible, near-infrared, and mid-infrared spectral ranges. The main performance parameters, such as field of view, beamwidth, sidelobe suppression, modulation speed, power consumption, scalability, and so on, are discussed in detail. Some of the typical applications of integrated optical phased arrays, such as free-space communication, light detection and ranging, imaging, and biological sensing, are shown, with future perspectives provided at the end.


Sign in / Sign up

Export Citation Format

Share Document