scholarly journals Detection of pseudorabies virus by duplex droplet digital PCR assay

2017 ◽  
Vol 30 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Meishen Ren ◽  
Hua Lin ◽  
Shijie Chen ◽  
Miao Yang ◽  
Wei An ◽  
...  

Aujeszky’s disease, caused by pseudorabies virus (PRV), has damaged the economy of the Chinese swine industry. A large number of PRV gene-deleted vaccines have been constructed based on deletion of the glycoprotein E ( gE) gene combined with other virulence-related gene deletions, such as thymidine kinase ( TK), whereas PRV wild-type strains contain an intact gE gene. We developed a sensitive duplex droplet digital PCR (ddPCR) assay to rapidly detect PRV wild-type isolates and gE gene–deleted viral vaccines. We compared this assay with a TaqMan real-time PCR (qPCR) using the same primers and probes. Both assays exhibited good linearity and repeatability; however, ddPCR maintained linearity at extremely low concentrations, whereas qPCR did not. Based on positive results for both gE and gB, the detection limit of ddPCR was found to be 4.75 copies/µL in contrast of 76 copies/µL for qPCR, showing that ddPCR provided a 16-fold improvement in sensitivity. In addition, no nonspecific amplification was shown in specificity testing, and the PRV wild-type was distinguished from a gE-deleted strain. The ddPCR was more sensitive when analyzing clinical serum samples. Thus, ddPCR may become an appropriate detection platform for PRV.

2020 ◽  
Author(s):  
chihai ji ◽  
Jingyu Wang ◽  
Yuchen Zeng ◽  
Haoming Pan ◽  
Yingfang Wei ◽  
...  

Abstract Background Pseudorabies, also known as Aujezsky’s disease, is an acute viral infection caused by pseudorabies virus (PRV). Swine are one of the natural hosts of pseudorabies, therefore, the disease brings huge economic losses to the swine industry. Establishment of a differential diagnosis technique that can distinguish between wild-type infected and vaccinated pigs, and monitor vaccine-induced IgG is crucial for eventual eradication of pseudorabies.Results The aim of this study was to develop a rapid dual detection method for PRV gE and gB protein IgG antibodies with high specificity and sensitivity. PRV gE codons at amino acid residues (aa) 52–238 and gB codons at aa 539–741 were expressed to obtain recombinant PRV gE and gB proteins by pMAL-c5x vector. After purification with Qiagen Ni–NTA agarose affinity, the two proteins were analyzed by SDS-PAGE and immunoblotting assay. Two single fluorescent-microsphere immunoassays (FMIA) were established by coupling two recombinant proteins (gE and gB) with two magnetic microbeads and an effective dual FMIA was developed by integrating the two single assays. Optimal serum dilution for each assay, correlation with other common swine virus-positive sera and comparison with ELISA for two PRV antigens were tested for validation. Compared with ELISA, the specificity and sensitivity were 99.26% and 92.3% for gE IgG antibody detection and 95.74% and 96.3% for gB IgG antibody detection by dual-FMIA.Conclusion We provide a new method for monitoring PRV protective antibody in vaccinated pigs and differentiating wild-type-PRV-infected from vaccinated pigs


2019 ◽  
Vol 31 (4) ◽  
pp. 604-607
Author(s):  
Yuqi Liu ◽  
Hecheng Meng ◽  
Lei Shi ◽  
Lili Li

Porcine circovirus 3 (PCV-3) is a newly emerging virus that poses a potential threat to the swine industry. We developed a sensitive assay utilizing droplet digital PCR (ddPCR) to detect PCV-3. Specificity of the assay was confirmed by the failure of amplification of DNA of other relevant viruses. The detection limit for ddPCR was 1 copy/μL, 10 times greater sensitivity than TaqMan real-time PCR (rtPCR). Both methods showed a high degree of linearity, although TaqMan rtPCR showed less sensitivity than ddPCR for clinical detection. Our findings indicate that ddPCR might offer faster and improved analytical sensitivity for PCV-3 detection.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 478
Author(s):  
Elena Pomari ◽  
Ronaldo Silva ◽  
Lucia Moro ◽  
Giulia La Marca ◽  
Francesca Perandin ◽  
...  

Background: The estimation of Plasmodium falciparum parasitaemia can vary according to the method used. Recently, droplet digital PCR (ddPCR) has been proposed as a promising approach in the molecular quantitation of Plasmodium, but its ability to predict the actual parasitaemia on clinical samples has not been largely investigated. Moreover, the possibility of applying the ddPCR-sensitive method to serum samples has never been explored. Methods: We used, for the first time, ddPCR on both blood and serum to detect the DNA of P. falciparum in 52 paired samples from 26 patients. ddPCR was compared with loop-mediated isothermal amplification (LAMP) and rtPCR. The correlation between the ddPCR results, microscopy, and clinical parameters was examined. Results: ddPCR and microscopy were found to be strongly correlated (ρ(26) = 0.83111, p < 0.0001) in blood. Samples deviating from the correlation were partially explained by clinical parameters. In serum samples, ddPCR revealed the best performance in detecting P. falciparum DNA, with 77% positive samples among malaria subjects. Conclusion: Absolute quantitation by ddPCR can be a flexible technique for Plasmodium detection, with potential application in the diagnosis of malaria. In particular, ddPCR is a powerful approach for Plasmodium DNA analysis on serum when blood samples are unavailable.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11019-11019 ◽  
Author(s):  
Julia A. Beaver ◽  
Sasidharan Balukrishna ◽  
Danijela Jelovac ◽  
Michaela Jane Higgins ◽  
Stacie Jeter ◽  
...  

11019 Background: PIK3CA is mutated in up to 30% of breast cancers. Classically somatic mutations are identified by Sanger sequencing of the primary tumor specimen. However third generation droplet digital PCR technologies offer a novel platform for quantitative mutation detection with improved sensitivity. Methods: Thirty stage I-III breast cancer patients were consented on an IRB-approved prospective repository study at Johns Hopkins for collection of their primary breast tumor specimen. Formalin-fixed paraffin embedded (FFPE) samples were analyzed by standard sequencing for three PIK3CA hotspot mutations. The DNA from these samples was then analyzed using the RainDrop digital PCR platform with TaqMan probes in a triplex format to simultaneously detect and quantitate hotspot mutations and genome equivalents. Results are expressed as a percentage of mutant to wild-type PIK3CA molecules for each sample. Results: Standard sequencing of all tumors (n=30) identified seven PIK3CA Exon 20 mutations (H1047R) and three Exon 9 mutations (E545K). Samples were scored as PIK3CA mutation positive by digital PCR if the tumor DNA contained at least 5% mutant molecules. All ten mutations identified by sequencing were verified by digital PCR with quantities of mutant molecules ranging from 20.3-55.6% in a given sample. Digital PCR identified additional PIK3CA mutations that were wild type by standard sequencing including three mutant Exon 20 samples, two mutant Exon 9 samples and one sample with an Exon 20 and Exon 9 mutation. Quantities of mutant molecules in these additional samples ranged from 5-28.9%. Conclusions: RainDrop digital PCR offers improved sensitivity and quantification for detecting PIK3CA mutations in FFPE samples using nanograms of DNA. Additional mutations identified by digital PCR may reflect genetic heterogeneity or possibly tissue contamination. The clinical utility of identifying a small proportion of mutations is unknown but may impact eligibility for targeted therapies and clinical trials. Ongoing studies will also address whether the identification of solid tumor mutations in circulating cell-free plasma DNA by digital PCR can improve diagnostics and aid in therapeutic decisions.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3951-3951
Author(s):  
Chiara Brambati ◽  
Cristina Toffalori ◽  
Elisabetta Xue ◽  
Lara Crucitti ◽  
Raffaella Greco ◽  
...  

Abstract INTRODUCTION:Despite the considerable improvement documented over the last two decades in the outcome of allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) for Acute Myeloid Leukemia (AML), primary disease relapse still represents the main cause of mortality in transplanted patients. Since most of the available therapies for post-transplantation relapse display very limited activity when enacted in overt hematologic recurrence, efforts are aimed to anticipate relapse detection and treatment to the Minimal Residual Disease (MRD) stage. Still, the genetic heterogeneity and extensive clonal evolution which are distinctive features of AML hinder the identification of reliable MRD markers. Recent studies demonstrated that mutations in the DNMT3A and IDH1/2 genes occur very early during the step-wise process of leukemogenesis, possibly representing disease founder mutations, shared by all disease subclones and maintained throughout the patient longitudinal history. Moreover, by being present both in full-fledged transformed cells and their progenitors, their tracking might provide a wider scope on the efficacy of allo-HSCT in eradicating preleukemic stem cells. METHODS: We took advantage of ultra-sensitive droplet digital PCR (ddPCR) to test a total of 52 bone marrow samples collected longitudinally over time from 17 patients who received myeloablative allo-HSCT for AML. All patients carried at least one mutation amongst DNMT3A R882H, IDH1 R132C, IDH1 R132H, IDH2 R140Q and IDH2 R172K, documented at diagnosis by conventional Sanger sequencing. As controls, we tested bone marrow samples collected at diagnosis from 7 patients typing negative for the mutations, and peripheral blood samples from 8 healthy individuals. ddPCR assays were performed using the Bio-Rad QX100 system: each sample was tested in duplicates, employing 25 ng of genomic DNA in each reaction well and using as reference for each mutation-specific assay the respective wild-type allele. Samples with a mutant-to-wild-type ratio above 0.1% were considered positive. ddPCR results were compared to those obtained testing the same samples by quantitative PCR (qPCR) assessment of the WT1 gene transcript (considering as threshold for relapse prediction 250 copies of WT1/104 copies of ABL) and by qPCR-based hematopoietic chimerism assessment (employing the AlleleSEQR Chimerism Assay and considering as threshold for relapse prediction a host-specific signal above 1%). RESULTS:All the 17 samples collected at diagnosis and typing positive for the mutations of interest by conventional Sanger sequencing resulted positive also for the corresponding ddPCR assay. None of the samples from healthy individuals or from patients typing negative for the mutations resulted positive by ddPCR. All the samples tested at post-transplantation relapse remained positive for the mutations present at diagnosis, except for one case, originally carrying both DNMT3A and IDH2 mutations and typing negative for the latter at relapse. This observation might argue against the putative role of IDH mutations as leukemia-founder events, and suggests that, when present, DNMT3A could represent a more reliable MRD marker. In samples harvested in overt leukemia, the population carrying the mutant allele, quantified by ddPCR, consistently exceeded the morphological count of leukemic blasts. When post-transplantation remission samples were tested, 32/32 (100%) of those harvested from patients who remained long-term leukemia-free (median follow-up after allo-HSCT: 19 months) resulted negative for the mutations of interest, whereas 3/5 (60%) of those from patients who subsequently relapsed resulted positive. Of notice, only 1 of those 5 samples displayed WT1 transcript overexpression and host chimerism above the 1% threshold, whereas the remaining 4 resulted negative by both qPCR-based techniques. CONCLUSIONS: Although the very small number of patients included in this preliminary analysis warrants for caution, ddPCR for DNMT3A and IDH1/2 mutations appears extremely promising, displaying optimal specificity and very high sensitivity in relapse prediction, and comparing favorably with our present and historical results obtained by qPCR-based post-transplantation monitoring techniques. Disclosures Bonini: MolMed S.p.A.: Consultancy.


2020 ◽  
Vol 32 (4) ◽  
pp. 572-576 ◽  
Author(s):  
Wei W. Cao ◽  
Dong S. He ◽  
Zhen J. Chen ◽  
Yu Z. Zuo ◽  
Xun Chen ◽  
...  

Porcine epidemic diarrhea, a disease caused by porcine epidemic diarrhea virus (PEDV), results in large economic losses to the global swine industry. To manage this disease effectively, it is essential to detect PEDV early and accurately. We developed a sensitive and accurate droplet digital PCR (ddPCR) assay to detect PEDV. The optimal primer-to-probe concentration and melting temperature were identified as 300:200 nM and 59.2°C, respectively. The specificity of the ddPCR assay was confirmed by negative test results for common swine pathogens. The detection limit for the ddPCR was 0.26 copies/μL, which is a 5.7-fold increase in sensitivity compared to that of real-time PCR (rtPCR). Both ddPCR and rtPCR assays exhibited good linearity, although ddPCR provided higher sensitivity for clinical detection compared to that of rtPCR. Our ddPCR methodology provides a promising tool for evaluating the PEDV viral load when used for clinical testing, particularly for detecting samples with low-copy viral loads.


2020 ◽  
Vol 32 (4) ◽  
pp. 535-541
Author(s):  
Ting-Yu Cheng ◽  
Alexandra Buckley ◽  
Albert Van Geelen ◽  
Kelly Lager ◽  
Alexandra Henao-Díaz ◽  
...  

We evaluated the detection of pseudorabies virus (PRV) antibodies in swine oral fluid. Oral fluid and serum samples were obtained from 40 pigs allocated to 4 treatment groups (10 pigs/group): negative control (NC); wild-type PRV inoculation (PRV 3CR Ossabaw; hereafter PRV); PRV vaccination (Ingelvac Aujeszky MLV; Boehringer Ingelheim; hereafter MLV); and PRV vaccination followed by PRV inoculation at 21 d post-vaccination (MLV-PRV). Using a serum PRV whole-virus indirect IgG ELISA (Idexx Laboratories) adapted to the oral fluid matrix, PRV antibody was detected in oral fluid samples from treatment groups PRV, MLV, and MLV-PRV in a pattern similar to serum. Vaccination alone produced a low oral fluid antibody response (groups MLV and MLV-PRV), but a strong anamnestic response was observed following challenge with wild-type virus (group PRV). Analyses of the oral fluid PRV indirect IgG ELISA results showed good binary diagnostic performance (area under ROC curve = 93%) and excellent assay repeatability (intra-class correlation coefficient = 99.3%). The demonstrable presence of PRV antibodies in swine oral fluids suggests the possible use of oral fluids in pseudorabies surveillance.


2005 ◽  
Vol 2 (2) ◽  
pp. 79-83 ◽  
Author(s):  
Tang Yong ◽  
Chen Huan-Chun ◽  
Qin Ya-Li ◽  
He Qi-Gai ◽  
Jin Mei-Lli ◽  
...  

AbstractTo differentiate pigs infected withPseudorabies virus(PrV) from pigs vaccinated with gE-PrV, a glycoprotein E enzyme-linked immunosorbent assay (gE-ELISA) based on recombinant glycoprotein E (gE) (which was expressed byEscherichia coli, purified, denatured and renatured) was developed. By testing 115 serum samples, the diagnostic specificity and sensitivity of the developed gE-ELISA were evaluated to be 94.5% and 96.7%, respectively. Five serum samples were tested with plates from five lots, and the results had a coefficient of variation of less than 10%, showing good reproducibility of gE-ELISA. This gE-ELISA was compared with a commercial blocking ELISA by testing 356 serum samples. The agreement rate of the two assays was 92.13% (328/356). These results suggested that the gE-ELISA developed in our laboratory could be used in differentiating PrV-infected and gE-PrV-vaccinated pigs.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S112-S113
Author(s):  
V Lip ◽  
L Grimmett ◽  
C Diaz ◽  
J Cantave ◽  
W Yang ◽  
...  

Abstract Introduction/Objective Rhabomyosarcomas (RMS) are a group of skeletal muscle tumors that include embryonal, alveolar, pleomorphic, spindle cell/sclerosing subtypes (SC/SRMS). Spindle cell RMS occurs in both adult and pediatric populations, and is associated with either more aggressive or better clinical outcomes respectively. A recurrent hotspot variant in MYOD1, p.L122R (NM_002478.4 c.365G&gt;T), has been described in SC/SRMS. The classification of this diagnosis is evolving, with VGLL2 and NCOA2 fusions defining the diagnosis in young children, and MYOD1 p.L122R defining the diagnosis in older children. The MYOD1 p.L122R variant seems to be associated with more aggressive disease, and may be increasingly used in risk stratification with intensification of treatment. Methods/Case Report A digital droplet PCR (ddPCR) assay was used to detect the MYOD1 p.L122R in DNA samples with RMS. Patients and controls were coded as positive or negative, and tested for association with clinical features and outcome. Results (if a Case Study enter NA) Known-positive cohort of samples was limited by the extreme rarity of this tumor. “Known-positive” status was established by confirmation of the variant with an external clinically-validated assay. The six known positive samples were assessed by ddPCR for the presence of MYOD1 L122R. The L122R variant was detected in all six variants for a sensitivity of 100%. DNA and/or TNA obtained from known wild-type FFPE and frozen material was assessed, for a total of nine unique samples (1 synthetic, 8 patient-derived). All 9 samples were wild- type, with no positive droplets detected, for a specificity of 100%. Conclusion Our MYOD1 c.365G&gt;T, p.L122R variant detection by droplet digital PCR (ddPCR) assay is a robust, reproducible, specific and sensitive method to detect the MYOD1 hotspot mutation.


2016 ◽  
Vol 62 (9) ◽  
pp. 1238-1247 ◽  
Author(s):  
Miguel Alcaide ◽  
Stephen Yu ◽  
Kevin Bushell ◽  
Daniel Fornika ◽  
Julie S Nielsen ◽  
...  

Abstract BACKGROUND A plethora of options to detect mutations in tumor-derived DNA currently exist but each suffers limitations in analytical sensitivity, cost, or scalability. Droplet digital PCR (ddPCR) is an appealing technology for detecting the presence of specific mutations based on a priori knowledge and can be applied to tumor biopsies, including formalin-fixed paraffin embedded (FFPE) tissues. More recently, ddPCR has gained popularity in its utility in quantifying circulating tumor DNA. METHODS We have developed a suite of novel ddPCR assays for detecting recurrent mutations that are prevalent in common B-cell non-Hodgkin lymphomas (NHLs), including diffuse large B-cell lymphoma, follicular lymphoma, and lymphoplasmacytic lymphoma. These assays allowed the differentiation and counting of mutant and wild-type molecules using one single hydrolysis probe. We also implemented multiplexing that allowed the simultaneous detection of distinct mutations and an “inverted” ddPCR assay design, based on employing probes matching wild-type alleles, capable of detecting the presence of multiple single nucleotide polymorphisms. RESULTS The assays successfully detected and quantified somatic mutations commonly affecting enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) (Y641) and signal transducer and activator of transcription 6 (STAT6) (D419) hotspots in fresh tumor, FFPE, and liquid biopsies. The “inverted” ddPCR approach effectively reported any single nucleotide variant affecting either of these 2 hotspots as well. Finally, we could effectively multiplex hydrolysis probes targeting 2 additional lymphoma-related hotspots: myeloid differentiation primary response 88 (MYD88; L265P) and cyclin D3 (CCND3; I290R). CONCLUSIONS Our suite of ddPCR assays provides sufficient analytical sensitivity and specificity for either the invasive or noninvasive detection of multiple recurrent somatic mutations in B-cell NHLs.


Sign in / Sign up

Export Citation Format

Share Document