An Energy Harvesting Comparison of Piezoelectric and Ionically Conductive Polymers

2008 ◽  
Vol 20 (5) ◽  
pp. 633-642 ◽  
Author(s):  
Kevin M. Farinholt ◽  
Nicholas A. Pedrazas ◽  
David M. Schluneker ◽  
David W. Burt ◽  
Charles R. Farrar

With advances in wireless communications and low power electronics there is an ever increasing need for efficient self-contained power systems. Traditional batteries are often selected for this purpose; however, there are limitations due to finite life-spans and the need to periodically recharge or replace the spent power source. One method to address this issue is the inclusion of an energy harvesting strategy that can scavenge energy from the surrounding environment and convert it into usable electrical energy. Since civil, industrial, and aerospace applications are often plagued with an overabundance of ambient vibrations, electromechanical transducers are often considered a viable choice for energy scavengers. In this study, two classes of transducer are considered: the piezoelectric polymer polyvinylidene fluoride and the ionically conductive ionic polymer transducer. Analytical models are formed for each material assuming axial loading and simulation results are compared with experimental results for each test. Each material is then compared to examine the effectiveness of their mechanoelectric conversion properties.

2019 ◽  
Vol 3 (3) ◽  
pp. 774-785 ◽  
Author(s):  
Deepalekshmi Ponnamma ◽  
Mariam Al Ali Al-Maadeed

Designing a piezoelectric nanogenerator based on ternary polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) nanocomposite containing ceramic BaTiO3 and hexagonal boron nitride nanomaterials.


Author(s):  
Ben Gunn ◽  
Panagiotis Alevras ◽  
Stephanos Theodossiades

Harvesting ambient energy in a variety of systems and applications is a relatively recent trend, often referred to as Energy Harvesting. This can be typically achieved by harvesting energy (that would otherwise get wasted) through a physical process aiming to convert energy amounts to useful electrical energy. The harvested energy can be thermal, solar, wind, wave or kinetic energy, with the last class mainly referring to harvesting energy from vibrating components or structures. More often these oscillations are error states from the systems’ ideal function and through harvesting this potentially wasted energy could be reclaimed and become useful. Regardless of the generally low power output of the devices designed to harvest energy from vibrations, their use remains an attractive concept, which is mostly attributed to the growing use of modern electronic devices that exploit the low power requirements of semi-conductors. Energy Harvesting applications are often met in situations where a network of essential electronic devices, such as sensors in Structural Health Monitoring or bio-implantable devices, becomes hardly accessible. Harvesting ambient vibrations to power up these devices offers the option to utilize wireless sensors rendering these systems autonomous. Typical cases of systems, where ambient vibrations are ubiquitous are met in automotive and aerospace applications. Besides their potentially adverse impact, the energy carried by vibrating parts could be harvested, such that wireless sensors are powered. In this paper, a concept for harvesting torsional vibrations is proposed, based on a concept that employs magnetic levitation to establish a nonlinear Energy Harvester. Experience has shown that linear harvesters require resonant response to operate, often leading to low performance of the device when the excitation frequency deviates from resonance conditions. This is why harvesters with essential nonlinearity are preferred, since they are able to demonstrate high response levels over wider frequency regions. Herein, the conducted study aims to demonstrate the functionality of this concept for torsional systems. A mathematical model of the coupled nonlinear electromechanical system is established, seeking preliminary estimates of the harvested power. The compelling attribute of this system lies in the dependency of its linear natural frequency on the excitation frequency, which is found to cause multiple response peaks in the corresponding frequency spectra. Moreover, the selection of the static equilibrium of the levitating magnet is found to greatly influence the system’s response.


Author(s):  
Mohamed Rhimi ◽  
Nizar Lajnef

Most civil structures have a low vibration response frequency range, generally one to two orders of magnitude lower than the operating frequency spectrum of most piezoelectric energy scavenging devices, which is dictated by the device’s design and the used materials. This considerably limits the levels of harvestable power under ambient vibrations. In this paper, the improvement of the energy harvesting characteristics of a bimorph cantilever lead zirconate titanate (PZT) piezoelectric beam through the application of initial pre-stress loading conditions is studied. A generalized model that can take into account all the vibration modes of the beam as well as the back coupling effect is derived using the Hamiltonian principle. The model describes the effect of the pre-stress parameters on the harvestable energy levels. Results showing the variations of the natural frequency, amplitude, and efficiency of the piezoelectric device with varying preload are presented. Vibration recordings from a bridge under ambient loading are used to show variations of the harvested power with different pre-stress conditions. Increases of up to 250% in the output power levels are shown possible through the application of 8N of compressive axial loading for a system with a 15g vibrating mass. Experimental verification of the model is also performed. The time and frequency domain responses of a piezoelectric bimorph are measured and compared to theoretical results.


Author(s):  
Amir Panahi ◽  
Alireza Hassanzadeh ◽  
Ali Moulavi ◽  
Ata Golparvar

This study presents a novel piezoelectric beam structure for acoustic energy harvesting. The beams have been designed to maximize output energy in areas where the noise level is loud such as highway traffic. The beam consists of two layers (copper and polyvinylidene fluoride) that convert the ambient noise’s vibration energy to electrical energy. The piezoelectric material’s optimum placement have been studied, and its best positon is obtained on the substrate for the maximum yield. Unlike previous studies, which the entire beam substrate used to be covered by a material, this study presents a modest material usage and contributes to lowering the harvester’s final production cost. Additionally, in this study, an electrical model was developed for the sensor and a read-out circuitry was proposed for the converter. Moreover, the sensor was validated at different noise levels at various lengths and locations. The simulations were performed in COMSOL Multiphysics® and MATLAB® and report a maximum sound pressure of 140 dB from 100 dB point sources in an enclosed air-filled cubic meter chamber.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Eustaquio Martínez-Cisneros ◽  
Luis A. Velosa-Moncada ◽  
Jesús A. Del Angel-Arroyo ◽  
Luz Antonio Aguilera-Cortés ◽  
Carlos Arturo Cerón-Álvarez ◽  
...  

Microelectromechanical system (MEMS)-based piezoelectric energy harvesting (PEH) devices can convert the mechanical vibrations of their surrounding environment into electrical energy for low-power sensors. This electrical energy is amplified when the operation resonant frequency of the PEH device matches with the vibration frequency of its surrounding environment. We present the electromechanical modeling of two MEMS-based PEH devices to transform the mechanical vibrations of domestic washing machines into electrical energy. These devices have resonant structures with a T shape, which are formed by an array of multilayer beams and a ultraviolet (UV)-resin seismic mass. The first layer is a substrate of polyethylene terephthalate (PET), the second and fourth layers are Al and Pt electrodes, and the third layer is piezoelectric material. Two different types of piezoelectric materials (ZnO and PZT-5A) are considered in the designs of PEH devices. The mechanical behavior of each PEH device is obtained using analytical models based on the Rayleigh–Ritz and Macaulay methods, as well as the Euler–Bernoulli beam theory. In addition, finite element method (FEM) models are developed to predict the electromechanical response of the PEH devices. The results of the mechanical behavior of these devices obtained with the analytical models agree well with those of the FEM models. The PEH devices of ZnO and PZT-5A can generate up to 1.97 and 1.35 µW with voltages of 545.32 and 45.10 mV, and load resistances of 151.12 and 1.5 kΩ, respectively. These PEH devices could supply power to internet of things (IoT) sensors of domestic washing machines.


Author(s):  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
Chulmin Cho

Energy harvesting (EH), which scavenges electric power from ambient, otherwise wasted, energy sources, has received considerable attention for the purpose of powering wireless sensor networks and low-power electronics. Among ambient energy sources, widely available vibration energy can be converted into electrical energy using piezoelectric materials that generate an electrical potential in response to applied mechanical stress. As a basis for designing a piezoelectric energy harvester, an analytical model should be developed to estimate electric power under a given vibration condition. Many analytical models under the assumption of the deterministic excitation cannot deal with random nature in vibration signals, although the randomness considerably affects variation in harvestable electrical energy. Thus, predictive capability of the analytical models is normally poor under random vibration signals. Such a poor power prediction is mainly caused by the variation of the dominant frequencies and their peak acceleration levels. This paper thus proposes the three-step framework of the stochastic piezoelectric energy harvesting analysis under non-stationary random vibrations. As a first step, the statistical time-frequency analysis using the Wigner-Ville spectrum was used to estimate a time-varying power spectral density (PSD) of an input random excitation. The second step is to employ an existing electromechanical model as a linear operator for calculating the output voltage response. The final step is to estimate a time-varying PSD of the output voltage response from the linear relationship. Then, the expected electric power was estimated from the autocorrelation function that is inverse Fourier transform of the time-varying PSD of the output voltage response. Therefore, the proposed framework can be used to predict the expected electric power under non-stationary random vibrations in a stochastic manner.


Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Yu-Ming Chu ◽  
Umair Khan ◽  
Adil Eddiai ◽  
...  

Because of some of their diverse benefits, intelligent textiles have attracted a great deal of interest among specialists over the past decade. This paper describes a novel approach to the manufacture of intelligent piezoelectric polymer-based textiles with enhanced piezoelectric responses for applications that extract biomechanical energy. Here we report a highly scalable and ultrafast production of smart textile piezoelectric containing graphene oxide nanosheets (GONS) dispersed in polyvinylidene fluoride (PVDF). In this work, Cotton textiles (CT) were functionalized and by graphene oxide (GO), using PVDF as a binder to obtain a CT-PVDF-GO material. Tetraethyl orthosilicate (TEOS) was further grafted as a coating layer to improve the surface compatibility, resulting in the CT-PVDF-GO-TEOS composite. The research results show that the addition of GONS significantly improves PVDF's overall crystallization rate on CT. More specifically, the piezoelectric β-phase content (100 % higher F[β]) and crystallinity degree on the piezoelectric properties of composite cotton fiber has been improved effectively. Consequently, this fabricated piezo-smart textile has a glorious piezoelectricity even with comparatively low coating content of PVDF-GONS-TEOS. Based on it, the as-fabricated piezoelectric textile device has resulted in the output voltage of up to 13 mV for a given frequency (fm = 8 Hz) at fixed strain amplitude value (0.5 %). It is believed that this research may further reveal the field of energy harvesting for possible applications in the future.. In addition, the set of experimental results that illustrate the smart textile was carried out and discussed, and how it can be used as a wearable device source for this smart textile. Finally, the approach described in this study can also be used to construct other desirable designs, for a wearable low-consumption sensor, etc.


Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Yu-Ming Chu ◽  
Umair Khan ◽  
Adil Eddiai ◽  
...  

The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. The present work aims to introduce an approach to harvesting electrical energy from a mechanically excited piezoelectric element and investigates a power analytical model generated by a smart structure of type polyvinylidene fluoride(PVDF) that can be stuck onto fabrics and flexible substrates, although we report the effects of various substrates and investigates the sticking of these substrates on the characterization of the piezoelectric material.


2017 ◽  
Vol 5 (7) ◽  
pp. 3091-3128 ◽  
Author(s):  
Chaoying Wan ◽  
Christopher Rhys Bowen

Energy harvesting exploits ambient sources of energy such as mechanical loads, vibrations, human motion, waste heat, light or chemical sources and converts them into useful electrical energy.


2021 ◽  
Vol 4 (3) ◽  
pp. 57
Author(s):  
Chouaib Ennawaoui ◽  
Abdelowahed Hajjaji ◽  
Cédric Samuel ◽  
Erroumayssae Sabani ◽  
Abdelkader Rjafallah ◽  
...  

This paper investigates energy harvesting performances of porous piezoelectric polymer films to collect electrical energy from vibrations and power various sensors. The influence of void content on the elastic matrix, dielectric, electrical, and mechanical properties of porous piezoelectric polymer films produced from available commercial poly(ethylene-co-vinyl acetate) using an industrially applicable melt-state extrusion method (EVA) were examined and discussed. Electrical and mechanical characterization showed an increase in the harvested current and a decrease in Young’s modulus with the increasing ratio of voids. Thermal analysis revealed a decrease in piezoelectric constant of the porous materials. The authors present a mathematical model that is able to predict harvested current as a function of matrix characteristics, mechanical excitation and porosity percentage. The output current is directly proportional to the porosity percentage. The harvested power significantly increases with increasing strain or porosity, achieving a power value up to 0.23, 1.55, and 3.87 mW/m3 for three EVA compositions: EVA 0%, EVA 37% and EVA 65%, respectively. In conclusion, porous piezoelectric EVA films has great potential from an energy density viewpoint and could represent interesting candidates for energy harvesting applications. Our work contributes to the development of smart materials, with potential uses as innovative harvester systems of energy generated by different vibration sources such as roads, machines and oceans.


Sign in / Sign up

Export Citation Format

Share Document