Capacitance creep and recovery behavior of magnetorheological elastomers

Author(s):  
Yuqin Fan ◽  
Hong Qin ◽  
Chuan Lu ◽  
Changrong Liao ◽  
Xianping Chen ◽  
...  

As a novel conductive elastomer, magnetorheological elastomers (MREs) featuring both high sensitivity and wide working range have been employed as a new sensing material for flexible tactile sensors. Their sensing mechanism, that is, the spatial distribution rearrangement of particles under compression, completely differs from their conventional counterparts. The piezo-capacitive effect of MREs resulting from the unique mechanism of particles rearrangement is actually a response to the microscopic mechanical movement of particles. This nature brings a core concern on the intrinsic relationship between their mechanical and electrical properties. This study illuminates them from the perspective of electrical creep and recovery behavior of MREs. We give a meaningful analysis for the capacitance creep-recovery mechanism. The experimental fact strongly demonstrated that the particles rearrangement was the direct cause, while the strain creep was an indirect cause. All the behaviors were well interpreted by an evolution mechanism of the particles rearrangement driven by the mechanical strain creep of the flexible matrix under constant pressure. In simpler terms, the electrical creep was induced by the mechanical creep. We further explored the creep effect in practical applications and found a “self-healing” behavior, which indicated that the MRE sensors could obtain a stable sensing capability after a pre-processing.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5124 ◽  
Author(s):  
Sajal Biring ◽  
Annada Sankar Sadhu ◽  
Moumita Deb

The development of a simple, low-cost sensor for the effective sensing of multiple gases in industrial or residential zones has been in high demand in recent days. In this article, we have proposed an optical sensor for the dual sensing of oxygen (O2) and ammonia (NH3) gases, which consists of oxygen and ammonia-sensitive fluorescent dyes coated individually on both sides of a glass substrate. An ethyl cellulose (EC) matrix doped with platinum (II) meso-tetrakis (pentafluorophenyl) porphyrin (PtTFPP) serves as the oxygen-sensing material, whereas the NH3-sensing material includes an eosin Y fluorescent indicator immobilized within a cellulose acetate (CA) matrix. Both the oxygen and ammonia-sensitive materials were excited by the same LED light source with a 405 nm peak wavelength, while the corresponding emissions were detected separately for the selective sensing of the gases under study. The dual gas sensor exhibits maximum sensitivities of around 60 and 20 for oxygen and ammonia gases, respectively. The high sensitivity and selectivity of the proposed optical dual sensor suggests the feasibility of the simultaneous sensing of oxygen and ammonia for practical applications.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Joon Lee ◽  
Srinivas Gandla ◽  
Byeongjae Lim ◽  
Sunju Kang ◽  
Sunyoung Kim ◽  
...  

Abstract Conformal and ultrathin coating of highly conductive PEDOT:PSS on hydrophobic uneven surfaces is essential for resistive-based pressure sensor applications. For this purpose, a water-based poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution was successfully exchanged to an organic solvent-based PEDOT:PSS solution without any aggregation or reduction in conductivity using the ultrafiltration method. Among various solvents, the ethanol (EtOH) solvent-exchanged PEDOT:PSS solution exhibited a contact angle of 34.67°, which is much lower than the value of 96.94° for the water-based PEDOT:PSS solution. The optimized EtOH-based PEDOT:PSS solution exhibited conformal and uniform coating, with ultrathin nanocoated films obtained on a hydrophobic pyramid polydimethylsiloxane (PDMS) surface. The fabricated pressure sensor showed high performances, such as high sensitivity (−21 kPa−1 in the low pressure regime up to 100 Pa), mechanical stability (over 10,000 cycles without any failure or cracks) and a fast response time (90 ms). Finally, the proposed pressure sensor was successfully demonstrated as a human blood pulse rate sensor and a spatial pressure sensor array for practical applications. The solvent exchange process using ultrafiltration for these applications can be utilized as a universal technique for improving the coating property (wettability) of conducting polymers as well as various other materials.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3881 ◽  
Author(s):  
Xiaogang Chen ◽  
Liang Fu ◽  
Qijing Lu ◽  
Xiang Wu ◽  
Shusen Xie

Liquid droplet and quasi-droplet whispering gallery mode (WGM) microcavities have been widely studied recently for the enhanced spatial overlap between the liquid and WGM field, especially in sensing applications. However, the fragile cavity structure and the evaporation of liquid limit its practical applications. Here, stable, packaged, quasi-droplet and droplet microcavities are proposed and fabricated for thermal sensing with high sensitivity. The sensitivity and electromagnetic field intensity distribution are analyzed by Mie theory, and a quantified definition of the quasi-droplet is presented for the first time to the best of our knowledge. By doping dye material directly into the liquid, lasing packaged droplet and quasi-droplet microcavity sensors with a high thermal sensitivity of up to 205.3 pm/°C are experimentally demonstrated. The high sensitivity, facile fabrication, and mechanically robust properties of the optofluidic, packaged droplet microresonator make it a promising candidate for future integrated photonic devices.


2021 ◽  
Author(s):  
M Nagoor Meeran ◽  
S.P. Saravanan ◽  
H.H Hegazy

Abstract Recent research demonstrate that promising gas sensing materials are called metal-organic structures (MOFs) and their products due to their tunable form, elevated surface area, and extremely porous structure and physisorption towards gases with relatively low temperature.In this report, recent developments in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives are synthesized as sensing materials. The sensors samples were analyzed by XRD, SEM, TEM, BET and XPS in order to know the textural, structural and electronic state of the samples. Fiber optic clad modified sensors were fabricated and tested gas sensing properties towards H2 gas with various concentrations (0-1000 ppm). Among the three sensing material, Zn doped MOFs sensor showed outstanding selectivity with high sensitivity (115 counts/kpa) towards H2 gas. Moreover, it has shown high response (20 s) and recovery time (27 s) as well as long term stability. The designed sensors may be required to apply to the production of an outstanding sensor for H2 for commercial uses.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 652
Author(s):  
Baoguo Wang ◽  
Rong Tu ◽  
Yinglong Wei ◽  
Haopeng Cai

Self-healing ceramics have been researched at high temperatures, but few have been considered at lower temperatures. In this study, SiC-Al2O3-B4C ceramic composite was compacted by spark plasma sintering (SPS). A Vickers indentation was introduced, and the cracks were healed between 600 °C and 800 °C in air. Cracks could be healed completely in air above 700 °C. The ceramic composite had the best healing performance at 700 °C for 30 min, recovering flexural strength of up to 94.2% of the original. Good crack-healing ability would make this composite highly useful as it could heal defects and flaws autonomously in practical applications. The healing mechanism was also proposed to be the result of the oxidation of B4C.


2021 ◽  
Vol 21 (8) ◽  
pp. 4400-4405
Author(s):  
Junyeop Lee ◽  
Nam Gon Do ◽  
Dong Hyuk Jeong ◽  
Sae-Wan Kim ◽  
Maeum Han ◽  
...  

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Yang Qiao ◽  
Zeqi Li ◽  
Mei-Hui Yu ◽  
Ze Chang ◽  
Xian-He Bu

High sensitivity and selectivity for detection of metal ions are very important to protect human health. Fluorescent metal-organic framework (MOF) as a new sensing material has attracted more and more...


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 597 ◽  
Author(s):  
Pei-Chen Zhao ◽  
Wen Li ◽  
Wei Huang ◽  
Cheng-Hui Li

The design of polymers that exhibit both good elasticity and self-healing properties is a highly challenging task. In spite of this, the literature reports highly stretchable self-healing polymers, but most of them exhibit slow elastic recovery behavior, i.e., they can only recover to their original length upon relaxation for a long time after stretching. Herein, a self-healing polymer with a fast elastic recovery property is demonstrated. We used 4-[tris(4-formylphenyl)methyl]benzaldehyde (TFPM) as a tetratopic linker to crosslink a poly(dimethylsiloxane) backbone, and obtained a self-healing polymer with high stretchability and fast elastic recovery upon stretching. The strain at break of the as-prepared polymer is observed at about 1400%. The polymer can immediately recover to its original length after being stretched. The damaged sample can be healed at room temperature with a healing efficiency up to 93% within 1 h. Such a polymer can be used for various applications, such as functioning as substrates or matrixes in soft actuators, electronic skins, biochips, and biosensors with prolonged lifetimes.


Sign in / Sign up

Export Citation Format

Share Document