Alignment of magnetic particles in hydrogel matrix: A novel anisotropic magnetic hydrogels for soft robotics

Author(s):  
Li Bin ◽  
Chanchan Xu ◽  
Shuai Dong ◽  
Xiaojie Wang

Magnetic hydrogels are composed of magnetic particles and hydrogel matrix. In recent years, the magnetic hydrogels have been developed rapidly because they have shown promising applications in drug release and artificial muscle. In this paper, we proposed a study to develop novel anisotropic magnetic hydrogels and investigate their mechanical and sensing properties for possible applications in soft robotics. In preparing the anisotropic magnetic hydrogels, the polyacrylamide (PAAm) hydrogel is chosen as a model hydrogel because of its popular application in soft electronics and ionic conductors. A method of free radicals copolymerization is employed to fill (polyacrylic acid/acrylamide) polymers in preparing anisotropic hydrogels under the magnetic field. Unlike most of the previous studies which incorporated magnetic nanoparticles into hydrogels, we mixed the micro-size carbonyl iron particles (CIPs) with the hydrogel and cured them under a magnetic field to form anisotropic structures within its crosslinking polymer chains. The particles and formed particle chains will not only improve the mechanical properties of the hydrogels but also provide sensing function as the electrical resistance changed from mechanical deformation referred to piezoresistivity. We experimentally evaluated the magnetorheological and the piezoresistive behaviors of the magnetic hydrogels, and demonstrated their potential use in soft robots as flexible touch sensors and variable-stiffness devices.

2020 ◽  
Vol 31 (20) ◽  
pp. 2312-2325
Author(s):  
Wei Sun ◽  
Jingjun Yu ◽  
Yueri Cai

Generally, variable stiffness joints of soft robots are generally fabricated using thermoplastics and elastomers due to their ability to change state from rigid to flexible and vice versa. However, these materials require a considerable amount of time to change states and are associated with other technical drawbacks. We demonstrate the instantaneous physical transformation of a Ga-based magnetorheological fluid called Gallistan from a liquid to a viscoelastic solid, and precisely controlled within milliseconds under an applied magnetic field. We studied the magnetic properties of a magnetorheological fluid by dispersing Fe particles in a Ga–In–Sn eutectic alloy. Theoretical analysis of the movement of two particles under magnetic field and typical defects in dipolar chains is studied. The experimental results showed a reversible change in Young’s modulus depending not only on the magnetic field intensity but also the percentage of magnetic particles. Thus, we confirm that the arrangement of magnetic particles transition from random distribution to stable chain structures in the magnetic field. Based on the bi-material nested cantilever beam, the variable stiffness joints can also be precisely adjusted under a magnetic field. In future, this property of the magnetorheological fluid will help develop a variable stiffness joint for soft robotics.


2018 ◽  
Vol 51 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Annemarie Nack ◽  
Julian Seifert ◽  
Christopher Passow ◽  
Joachim Wagner

Field-induced changes to the mesostructure of ferrogels consisting of spindle-shaped hematite particles and poly(N-isopropylacrylamide) are investigated by means of small-angle X-ray scattering (SAXS). Related field-induced changes to the macroscopic viscoelastic properties of these composites are probed by means of oscillatory shear experiments in an external magnetic field. Because of their magnetic moment and magnetic anisotropy, the hematite spindles align with their long axis perpendicular to the direction of an external magnetic field. The field-induced torque acting on the magnetic particles leads to an elastic deformation of the hydrogel matrix. Thus, the field-dependent orientational distribution functions of anisotropic particles acting as microrheological probes depend on the elastic modulus of the hydrogel matrix. The orientational distribution functions are determined by means of SAXS experiments as a function of the varying flux density of an external magnetic field. With increasing elasticity of the hydrogels, tunedviathe polymer volume fraction and the crosslinking density, the field-induced alignment of these anisotropic magnetic particles is progressively hindered. The microrheological results are in accordance with macrorheological experiments indicating increasing elasticity with increasing flux density of an external field.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Seigo Kimura ◽  
Ryuji Suzuki ◽  
Katsuki Machida ◽  
Masashi Kashima ◽  
Manabu Okui ◽  
...  

In this paper, the prototype of the assistive suit for lower limbs was developed. The prototype was based on an assist method with joint stiffness and antagonized angle control. The assist method comprises a system consisting of a pneumatic artificial muscle and a pull spring, which changes the joint stiffness and the antagonized angle to correspond to the movement phase and aims at coordinated motion assistance with the wearer. First, the characteristics of the developed prototype were tested. It was confirmed that the measured value of the prototype followed the target value in the relationship between torque and angle. In addition, there was hysteresis in the measured value, but it did not affect the assist. Next, the evaluation of standing-up and gait assist by measuring electromyography (EMG) of the knee extensor muscle was conducted using the prototype. In all subjects, a decrease in EMG due to the assist was confirmed. In one subject, the maximum decrease rate at the peak of the EMG was about 50% for standing-up motion and about 75% for gait motion. From the results of these assist evaluations, the effectiveness of the assist method based on the joint stiffness and antagonistic angle control using the prototype was confirmed.


2021 ◽  
Vol 7 (5) ◽  
pp. 82
Author(s):  
River Gassen ◽  
Dennis Thompkins ◽  
Austin Routt ◽  
Philippe Jones ◽  
Meghan Smith ◽  
...  

Magnetic particles have been evaluated for their biomedical applications as a drug delivery system to treat asthma and other lung diseases. In this study, ferromagnetic barium hexaferrite (BaFe12O19) and iron oxide (Fe3O4) particles were suspended in water or glycerol, as glycerol can be 1000 times more viscous than water. The particle concentration was 2.50 mg/mL for BaFe12O19 particle clusters and 1.00 mg/mL for Fe3O4 particle clusters. The magnetic particle cluster cross-sectional area ranged from 15 to 1000 μμm2, and the particle cluster diameter ranged from 5 to 45 μμm. The magnetic particle clusters were exposed to oscillating or rotating magnetic fields and imaged with an optical microscope. The oscillation frequency of the applied magnetic fields, which was created by homemade wire spools inserted into an optical microscope, ranged from 10 to 180 Hz. The magnetic field magnitudes varied from 0.25 to 9 mT. The minimum magnetic field required for particle cluster rotation or oscillation in glycerol was experimentally measured at different frequencies. The results are in qualitative agreement with a simplified model for single-domain magnetic particles, with an average deviation from the model of 1.7 ± 1.3. The observed difference may be accounted for by the fact that our simplified model does not include effects on particle cluster motion caused by randomly oriented domains in multi-domain magnetic particle clusters, irregular particle cluster size, or magnetic anisotropy, among other effects.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


Author(s):  
Jia Ji Lee ◽  
Chang Hong Pua ◽  
Misni Misran ◽  
Poh Foong Lee

Objectives: Magnetic drug targeting offers the latest popular alternative option to deliver magnetic drug carriers into targeting region body parts through manipulation of an external magnetic field. However, the effectiveness of using an electromagnetic field to manipulate and directing magnetic particles is yet to be established. Methods: In this paper, a homemade cost-effective electromagnet system was built for the purpose of studying the control and directing the magnetic drug carriers. The electromagnet system was built with four electromagnetic sources and tested the capability in directing the particles’ movement in different geometry patterns. Besides that, the creation of the self-rotation of individual magnetic particle clusters was achieved by using fast switching between magnetic fields. This self-rotation allows the possibility of cell apoptosis study to carry out. The system was constructed with four electromagnets integrated with a feedback control system and built to manipulate a droplet of commercially available iron (II, III) oxide nanoparticles to steer the magnetic droplet along different arbitrary trajectories (square, circle, triangle, slanted line) in 2-dimensional. Results: A dynamic magnetic field of 25 Hz was induced for magnetic nanoparticles rotational effect to observe the cell apoptosis. A profound outcome shows that the declining cell viability of the cell lines by 40% and the morphology of shrinking cells after the exposure of the dynamic magnetic field. Conclusion: The outcome from the pilot study gives an idea on the laboratory setup serves as a fundamental model for studying the electromagnetic field strength in applying mechanical force to target and to rotate for apoptosis on cancer cell line study.


2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Xingji Li ◽  
Zhilong Peng ◽  
Yazheng Yang ◽  
Shaohua Chen

Bio-inspired functional surfaces attract many research interests due to the promising applications. In this paper, tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field is investigated theoretically in order to disclose the mechanical mechanism of changeable adhesion and the influencing factors. Each polydimethylsiloxane (PDMS) micropillar reinforced by uniformly distributed magnetic particles is assumed to be a cantilever beam. The beam's large elastic deformation is obtained under an externally magnetic field. Specially, the rotation angle of the pillar's end is predicted, which shows an essential effect on the changeable adhesion of the micropillar arrayed surface. The larger the strength of the applied magnetic field, the larger the rotation angle of the pillar's end will be, yielding a decreasing adhesion force of the micropillar arrayed surface. The difference of adhesion force tuned by the applied magnetic field can be a few orders of magnitude, which leads to controllable adhesion of such a micropillar arrayed surface. Influences of each pillar's cross section shape, size, intervals between neighboring pillars, and the distribution pattern on the adhesion force are further analyzed. The theoretical predictions are qualitatively well consistent with the experimental measurements. The present theoretical results should be helpful not only for the understanding of mechanical mechanism of tunable adhesion of micropillar arrayed surface under a magnetic field but also for further precise and optimal design of such an adhesion-controllable bio-inspired surface in future practical applications.


2018 ◽  
Vol 115 (51) ◽  
pp. 12950-12955 ◽  
Author(s):  
Yuxing Yao ◽  
James T. Waters ◽  
Anna V. Shneidman ◽  
Jiaxi Cui ◽  
Xiaoguang Wang ◽  
...  

Dynamic functions of biological organisms often rely on arrays of actively deformable microstructures undergoing a nearly unlimited repertoire of predetermined and self-regulated reconfigurations and motions, most of which are difficult or not yet possible to achieve in synthetic systems. Here, we introduce stimuli-responsive microstructures based on liquid-crystalline elastomers (LCEs) that display a broad range of hierarchical, even mechanically unfavored deformation behaviors. By polymerizing molded prepolymer in patterned magnetic fields, we encode any desired uniform mesogen orientation into the resulting LCE microstructures, which is then read out upon heating above the nematic–isotropic transition temperature (TN–I) as a specific prescribed deformation, such as twisting, in- and out-of-plane tilting, stretching, or contraction. By further introducing light-responsive moieties, we demonstrate unique multifunctionality of the LCEs capable of three actuation modes: self-regulated bending toward the light source at T < TN–I, magnetic-field–encoded predetermined deformation at T > TN–I, and direction-dependent self-regulated motion toward the light at T > TN–I. We develop approaches to create patterned arrays of microstructures with encoded multiple area-specific deformation modes and show their functions in responsive release of cargo, image concealment, and light-controlled reflectivity. We foresee that this platform can be widely applied in switchable adhesion, information encryption, autonomous antennae, energy harvesting, soft robotics, and smart buildings.


Sign in / Sign up

Export Citation Format

Share Document