scholarly journals Experiments and Electromechanical Properties of a Broadband Piezoelectric Vibration Energy Harvester

2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Guangqing Wang ◽  
Shuaishuai Gao ◽  
Xiaojun Li

A broadband piezoelectric energy harvester (BPEH), consisting of a conventional linear piezoelectric energy harvester (CPEH) and an elastic magnifier, was presented in this paper. The improved two-degree-of-freedom lumped-parameter electromechanical model of the BPEH was established and the optimal external resistances under short-circuit and open-circuit resonance conditions were investigated to maximize the output power of the BPEH. The output voltage and output power of the BPEH obtained from the theoretical model were verified and found to be in reasonable agreement with the experimental results. The obtained results have shown that the maximal output powers under short-circuit and open-circuit resonance conditions are both 24 times that generated by the CPEH without elastic magnifier. The frequency space between the two peaks of the frequency-response curve of the BPEH is 14 Hz which is 7 times that of CPEH.

Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4619 ◽  
Author(s):  
Kaiyuan Zhao ◽  
Qichang Zhang ◽  
Wei Wang

A square cylinder with a V-shaped groove on the windward side in the piezoelectric cantilever flow-induced vibration energy harvester (FIVEH) is presented to improve the output power of the energy harvester and reduce the critical velocity of the system, aiming at the self-powered supply of low energy consumption devices in the natural environment with low wind speed. Seven groups of galloping piezoelectric energy harvesters (GPEHs) were designed and tested in a wind tunnel by gradually changing the angle of two symmetrical sharp angles of the V-groove. The GPEH with a sharp angle of 45° was selected as the optimal energy harvester. Its output power was 61% more than the GPEH without the V-shaped groove. The more accurate mathematical model was made by using the sparse identification method to calculate the empirical parameters of fluid based on the experimental data and the theoretical model. The critical velocity of the galloping system was calculated by analyzing the local Hopf bifurcation of the model. The minimum critical velocity was 2.53 m/s smaller than the maximum critical velocity at 4.69 m/s. These results make the GPEH with a V-shaped groove (GPEH-V) more suitable to harvest wind energy efficiently in a low wind speed environment.


Author(s):  
Xia Li ◽  
Zhiyuan Li ◽  
Benxue Liu ◽  
Jun Zhang ◽  
Weidong Zhu

To widen the operation wind speed bandwidth of a classic vortex shedding induced vibration piezoelectric energy harvester, a piezoelectric-electromagnetic hybrid energy harvester based on vortex shedding induced vibration is designed. The hybrid vortex shedding induced vibration energy harvester (HVSIVEH) includes a vortex shedding induced vibration piezoelectric energy harvester (VSIVPEH) and an electromagnetic vibration energy harvester (EVEH). The electromechanical coupled vibration model of the hybrid structure was established. By comparing the variations of the output power as a function of the wind speed of the HVSIVEH and the classic VSIVPEH, it is found that the power response curve of the HVSIVEH has two peaks. The hybrid structure can broaden the working wind speed range. The lower the requirement on the output power level, the more obvious the effect of widening the wind speed range. By the solution and analysis of the electromechanical coupled model, better values of related parameters of the HVSIVEH are obtained. The first and second peaks of the output power of the HVSIVEH show better values of 1.9 and 2.2 mW, respectively, under these parameters.


2018 ◽  
Vol 29 (11) ◽  
pp. 2465-2476 ◽  
Author(s):  
Dan Zhao ◽  
Shaogang Liu ◽  
Qingtao Xu ◽  
Wenyi Sun ◽  
Tao Wang ◽  
...  

In the article, a novel 2-degree-of-freedom hybrid piecewise-linear piezoelectric–electromagnetic vibration energy harvester is presented to achieve better energy harvesting efficiency. The harvester consists of a primary piezoelectric energy harvesting device to which an electromagnetic mechanism is coupled to improve the integral energy output, and a driven beam is mounted to broaden the operating bandwidth by inducing nonlinearity. Considering the piezoelectric–electromagnetic coupling characteristics and the nonlinear factors, dynamic equations of the system are established. Expressions of the output power are deduced though averaging method. Characteristic parameters are analyzed theoretically, including the piezoelectric parameters, electromagnetic parameters, and the piecewise-linearity. Frequency sweep excitation test is conducted on the setup at an excitation acceleration of 0.3 g and results demonstrate that two resonant regions are obtained with the peak output power of 5.4 and 6.49 mW, respectively, and the operating bandwidth is increased by 8 Hz. Moreover, though adjusting the stiffness of the driven beam k3 and the gap between the primary beam and the driven beam d, the performance of the harvester can be further optimized.


Author(s):  
Lihua Tang ◽  
Yaowen Yang ◽  
Liya Zhao

A conventional vibration energy harvester is usually designed as a linear single-degree-of-freedom (1DOF) resonator. The efforts to improve its efficiency involve two aspects, i.e., enlarging the magnitude of output and widening the operating bandwidth. In this paper, we propose a magnetic coupled cantilever piezoelectric energy harvester (PEH) to achieve the above two goals. Different from other reported magnetic coupled PEHs, the magnetic interaction in the proposed design is introduced by a magnetic oscillator. Firstly, the lumped parameter models are established for the conventional linear PEH, the nonlinear PEH with a fixed magnet and the proposed PEH with a magnetic oscillator. The governing equations of the three systems are then provided in the state space form and their dynamics can be simulated by numerical integration. Subsequently, experimental tests are performed to validate the models. Both experiment and simulation show that the dynamics of the magnetic oscillator is able to not only broaden the operating bandwidth but also enhance the maximum power output of the PEH. Based on the validated model, parametric study is conducted to optimize the system performance.


2018 ◽  
Vol 1 (2) ◽  
pp. p6
Author(s):  
Anahita Zargarani ◽  
S. Nima Mahmoodi

In this paper, a new method is proposed for improving a piezoelectric energy harvester’s output power. A piezoelectric vibration energy harvester has an inherent internal capacitance. The new approach adopts inductance to reduce the reactance of the internal capacitance and enhance the output power. To show the practicality of this method, four electrical circuits are investigated numerically and experimentally for a piezoelectric beam energy harvester: Simple Resistive Load, Inductive Load, standard AC-DC, and Inductive AC-DC circuits. An Inductive Load circuit is built by adding an inductor to a Simple Resistive Load circuit, while an Inductive AC-DC circuit is built by adding an inductor to a standard AC-DC circuit. Experimental results indicate that the Inductive Load and the Inductive AC-DC circuits avail the Simple Resistive Load and standard AC-DC circuits respectively. The inductive AC-DC circuit shows a 6.7% increase in the output power compared to the standard AC-DC circuit.


2020 ◽  
Vol 87 (9) ◽  
pp. 575-585
Author(s):  
Suresh Kote ◽  
Shankar Krishnapillai ◽  
Sujatha Chandramohan

AbstractIn piezoelectric energy harvesting devices, the relative displacement between the two ends of the harvester beam decides the output power from the piezoelectric patch. A novel four bar mechanism with a helical spring is used as a dynamic magnifier to improve the relative displacement and thereby the output power from the harvester. This dynamic magnifier is placed between the base excitation location and the composite harvester beam to form two degrees of freedom (2DOF) piezoelectric energy harvester. Electromechanical coupled analytical equations for the voltage and output power are derived using a lumped electromechanical model. The model is developed assuming linear transverse vibrations of the harvester. A dynamic magnifier is fabricated for the required frequency range and the suitable dimensions of the harvester beam are estimated using commercially available software. Experiments are conducted for base excitation amplitude of 0.05 mm and the performance of the proposed 2DOF harvester is studied for the output voltage and power. The proposed 2DOF harvester has shown 110 % improvement in output power in first mode and 270 % improvement in second mode compared to the conventional single degree of freedom (SDOF) cantilevered harvester for given identical input conditions. The measured frequencies and output power are validated with analytical solutions and are found to be in good agreement. Further, the effect of mass ratio, stiffness ratio and base excitation amplitude on the output voltage and power is investigated using analytical expressions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Author(s):  
Saman Nezami ◽  
HyunJun Jung ◽  
Myung Kyun Sung ◽  
Soobum Lee

This paper presents mathematical modeling of an energy harvester (EH) for a wireless structure health monitoring (SHM) system in wind turbine blades. The harvester consists of a piezoelectric energy harvester (PEH) beam, a gravity-induced disk, and magnets attached to both the beam and the disk. An electromechanical model of the proposed EH is developed using the energy method with repelling magnetic force considered. The three coupled equations — the motion of the disk, the vibration of the beam, and the voltage output — are derived and solved using ODE45 in MATLAB software. The result showed the blade rotation speed affects the output angular velocity of disk and the output PEH voltage. That is, as the blade speed increases, the disk angular velocity becomes nonlinear and chaotic which is more beneficial to generate larger power.


Sign in / Sign up

Export Citation Format

Share Document