A human heartbeat frequencies based 2-DOF piezoelectric energy harvester for pacemaker application

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hygin Davidson Mayekol Mayck ◽  
Ahmed Mohamed Rashad Fath El-Bab ◽  
Evan Murimi ◽  
Pierre Moukala Mpele

Abstract In the last decade, piezoelectric energy harvesters have received a significant attention from the scientific community. This comes along with the need of developing self-powered devices such as medical implant to reduce the cost and risk of surgery. This paper investigates a two degree of freedom (2-DOF) piezoelectric energy harvester device to be integrated into a pacemaker. The 2-DOF is designed as a cut-out beam with a secondary beam cut into a primary one. The system is developed to operate in the frequency range of 0–2 Hz, with an acceleration of 1 g (9.8 m/s2) to match the heartbeat frequencies (1–1.67 Hz). The system uses a Lead Zirconate Titanate (PZT) and a Poly Methyl Methacrylate (PMMA) as lead beam to compensate the brittleness of PZT. COMSOL Multiphysics software is used to model and analyze the resonant frequencies of the system, and the stress in the piezoelectric beam. The proposed device has a compact volume of 26 × 11.58 × 0.41 mm, which can fit perfectly in a pacemaker whose battery volume has been reduced by 50%. The output voltage and power are determined through analytical calculus using Matlab. Typical pacemakers require 1 μW to operate. Thus, with a peak power of 30.97 μW at 1.5 Hz and an average output power of 11.05 μW observed from 0.9 to 1.7 Hz, the harvester can power a pacemaker. It is assumed that the energy harvester could extend its life time for 5–10 more years. Furthermore, the harvester operates at extremely low frequency and produces reasonable power, making it suitable for biomedical devices.

2014 ◽  
Vol 1051 ◽  
pp. 932-936
Author(s):  
Mun Heng Lam ◽  
Hanim Salleh

This paper presents work on improving piezoelectric energy harvesters. Harvesting energy from vibrations has received massive attention due to it being a renewable energy source that has a wide range of applications. Over the years of development, there is always research to further improve and optimise piezoelectric energy harvesters. For this paper, the piezoelectric specimen is made of PZT (Lead Zirconate Titanate), brass reinforced and has 31.8mm length, 12.7mm width and 0.511mm thick. An external beam is implemented to provide deflection amplification which in turn increases the output of the energy harvester. Depending on the configuration of the external beam, it can amplify output voltage from 100% to 300%.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 237
Author(s):  
Se Yeong Jeong ◽  
Liang Liang Xu ◽  
Chul Hee Ryu ◽  
Anuruddh Kumar ◽  
Seong Do Hong ◽  
...  

This study covers a self-powered wireless communication system that is powered using a piezoelectric energy harvester (PEH) in a shoe. The lead-zirconate-titanate (PZT) ceramic of the PEH was coated with UV resin, which (after curing under UV light) allowed it to withstand periodic pressure. The PEH was designed with a simple structure and placed under the sole of a shoe. The durability of the PEH was tested using a pushing tester and its applicability in shoes was examined. With periodic compression of 60 kg, the PEH produced 52 μW of energy at 280 kΩ. The energy generated by the PEH was used to power a wireless transmitter. A step-down converter with an under-voltage lockout function was used to gather enough energy to operate the wireless transmitter. The transmitter can be operated initially after walking 24 steps. After the transmitter has been activated, it can be operated again after 8 steps. Because a control center receives signals from the transmitter, it is possible to check the status of workers who work outside at night or mostly alone, to detect emergencies.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


Author(s):  
M. H. Ansari ◽  
M. Amin Karami

A three dimensional piezoelectric vibration energy harvester is designed to generate electricity from heartbeat vibrations. The device consists of several bimorph piezoelectric beams stacked on top of each other. These horizontal bimorph beams are connected to each other by rigid vertical beams making a fan-folded geometry. One end of the design is clamped and the other end is free. One major problem in micro-scale piezoelectric energy harvesters is their high natural frequency. The same challenge is faced in development of a compact vibration energy harvester for the low frequency heartbeat vibrations. One way to decrease the natural frequency is to increase the length of the bimorph beam. This approach is not usually practical due to size limitations. By utilizing the fan-folded geometry, the natural frequency is decreased while the size constraints are observed. The required size limit of the energy harvester is 1 cm by 1 cm by 1 cm. In this paper, the natural frequencies and mode shapes of fan-folded energy harvesters are analytically derived. The electro-mechanical coupling has been included in the model for the piezoelectric beam. The design criteria for the device are discussed.


Author(s):  
Zhengbao Yang ◽  
Jean Zu

Energy harvesting from vibrations has become, in recent years, a recurring target of a quantity of research to achieve self-powered operation of low-power electronic devices. However, most of energy harvesters developed to date, regardless of different transduction mechanisms and various structures, are designed to capture vibration energy from single predetermined direction. To overcome the problem of the unidirectional sensitivity, we proposed a novel multi-directional nonlinear energy harvester using piezoelectric materials. The harvester consists of a flexural center (one PZT plate sandwiched by two bow-shaped aluminum plates) and a pair of elastic rods. Base vibration is amplified and transferred to the flexural center by the elastic rods and then converted to electrical energy via the piezoelectric effect. A prototype was fabricated and experimentally compared with traditional cantilevered piezoelectric energy harvester. Following that, a nonlinear conditioning circuit (self-powered SSHI) was analyzed and adopted to improve the performance. Experimental results shows that the proposed energy harvester has the capability of generating power constantly when the excitation direction is changed in 360. It also exhibits a wide frequency bandwidth and a high power output which is further improved by the nonlinear circuit.


2020 ◽  
Vol 31 (13) ◽  
pp. 1594-1603
Author(s):  
Tejkaran Narolia ◽  
Vijay K Gupta ◽  
IA Parinov

A rotary-type energy harvester for the applications having space restrictions has been designed and developed to harvest the energy from rotary motion system. The rotation kinetic energy is converted into electrical energy through a lead zirconate titanate patch, which is strained by magnetic force. Most of the researchers used d31 mode of the piezoelectric material of such conversion. Some researchers have explored d33 mode harvester with piezo patch along the circumferential direction. In this article, d33 mode of harvesting with radial direction piezo patch has been proposed. Mathematical and finite element models are developed to calculate the harvested energy. The results are experimentally verified. The average output power of 14.48 nW is generated corresponding to the magnetic force of 0.3126 N and rotational speed of 2100 r/min. The results from the mathematical and finite element models are observed to be consistent with the experimental results. Such harvester will be useful for the applications having space limitations such as self-power generation in an artillery shell and rotary projectile.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750128 ◽  
Author(s):  
Babak Montazer ◽  
Utpal Sarma

Modeling and analysis of a MEMS piezoelectric (PZT-Lead Zirconate Titanate) unimorph cantilever with different substrates are presented in this paper. Stainless steel and Silicon [Formula: see text] are considered as substrate. The design is intended for energy harvesting from ambient vibrations. The cantilever model is based on Euler–Bernoulli beam theory. The generated voltage and power, the current density, resonance frequencies and tip displacement for different geometry (single layer and array structure) have been analyzed using finite element method. Variation of output power and resonant frequency for array structure with array elements connected in parallel have been studied. Strain distribution is studied for external vibrations with different frequencies. The geometry of the piezoelectric layer as well as the substrate has been optimized for maximum power output. The variation of generated power output with frequency and load has also been presented. Finally, several models are introduced and compared with traditional array MEMS energy harvester.


Author(s):  
Junyi Cao ◽  
Shengxi Zhou ◽  
Daniel J. Inman

This paper investigates the nonlinear dynamic characteristics of a magnetically coupled piezoelectric energy harvesters under low frequency excitation, where the angle of external magnetic field is adjustable. The nonlinear dynamic equation with the identified nonlinear magnetic force is derived to describe the electromechanical interaction of variable inclination angle harvesters. The effect of excitation amplitude and frequency on dynamic behavior is proposed by using the phase trajectory and bifurcation diagram. The numerical analysis shows that a rotatable magnetically coupling energy harvesting system exhibits rich nonlinear characteristics with the change of external magnet inclination angle. The nonlinear route to and from large amplitude high energy motion can be clearly observed. It is demonstrated numerically and experimentally that lumped parameters equations with an identified polynomials for magnetic force could adequately describe the characteristics of nonlinear energy harvester. The rotating magnetically coupled energy harvester possesses the usable frequency bandwidth over a wide range of low frequency excitation by adjusting the angular orientation.


2013 ◽  
Vol 300-301 ◽  
pp. 912-915
Author(s):  
Yusuke Uchida ◽  
Satoshi Iizumi ◽  
Syungo Tomioka ◽  
Kyohei Tsujimoto ◽  
Kazuki Tomii ◽  
...  

This paper presents the power generation performances of an array of three microelectromechanical system (MEMS) acoustic energy harvesters equiped with lead–zirconate–titanate (PZT) capacitors. The PZT acoustic energy harvesters had a diaphragm with a diameter of 2 mm consisting of Al (0.1 μm) / PZT (1 μm) / Pt (0.1 μm) / Ti (0.1 μm) / SiO2 (1.5 μm), and the diaphragm vibrations were excited by sound pressure. The arrayed peripheral energy harvester generated a maximum power of 2.26 × 10-10 W at a sound pressure level (SPL) of 100 dB at 5 kHz. The output power of three arraying devices was about 3 times larger than that of the single devices.


Sign in / Sign up

Export Citation Format

Share Document