The effect of mesocarbon microbeads on magnetorheological fluid behavior

Author(s):  
Rebecca Pierce ◽  
Young-Tai Choi ◽  
Norman M Wereley

Magnetorheological (MR) fluids are composed of magnetizeable particles suspended in a carrier fluid and change apparent viscosity upon the application of a magnetic field. Previous studies have shown that passive particles, such as hollow glass spheres, can augment the yield stress of MR fluids, but this yield stress augmentation has limited endurance because the hollow glass microspheres are not sufficiently durable. This study evaluates mesocarbon microbeads (MCMBs) as an alternative passive particle with the potential for MR yield force augmentation but with greater durability. The yield properties of six MR fluid concentrations with varying carbonyl iron particle (CIP) and MCMB volume fractions were tested using a shear mode rheometer and flow mode MR damper. MCMBs did not augment yield stress in shear mode, but, in contrast, in flow mode, the yield force increased nonlinearly with MCMB volume fraction. Furthermore, this yield force-enhancing effect did not diminish over 100,000 cycles (or 5 km of piston travel). The theoretical non-dimensional plug thickness which arises from an approximate parallel plate analysis of a fluid element in flow mode is used illustrate to a potential mechanism for the yield force augmentation effect.

Author(s):  
Andrea Spaggiari ◽  
Eugenio Dragoni

Magnetorheological (MR) fluids have a lot of applications in the industrial world, but sometimes their properties are not performing enough to meet system requirements. It has been found that in shear mode MR fluids exhibits a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices work in flow mode (i.e. dampers) this paper investigates the behaviour in flow mode under pressure. The system design is articulated in three steps: hydraulic system design, magnetic circuit design and design of experiment. The experimental apparatus is a cylinder in which a translating piston displaces the fluid without the use of standard gear pumps, incompatible with MR fluids. The experimental apparatus measures the MR fluid yield stress as a function of pressure and magnetic field allowing the yield shear stress to be calculated. A statistical analysis of the results shows that the squeeze strengthen effect is present in flow mode as well and the presence of internal pressure is able to enhance the performance of MR fluid by nearly ten times.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
A. Spaggiari ◽  
E. Dragoni

Magnetorheological (MR) fluids are widely used in the industrial world; however, sometimes their properties fail to meet system requirements. In shear mode, MR fluids have been found to exhibit a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices work in flow mode (i.e., dampers), this paper investigates the behavior in flow mode under pressure. The system design consists of three steps: the hydraulic system, the magnetic circuit, and the design of experiment method. The experimental apparatus is a cylinder in which a piston displaces the fluid without the use of standard gear pumps, which are incompatible with MR fluids. The experimental apparatus measures the yield stress of the MR fluid as a function of the pressure and magnetic field, thus, enabling the yield shear stress to be calculated. A statistical analysis of the results shows that the squeeze strengthen effect is also present in flow mode, and that the internal pressure enhances the performance of MR fluids by nearly five times.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1374-1380 ◽  
Author(s):  
A. CHAUDHURI ◽  
G. WANG ◽  
N. M. WERELEY ◽  
VASIL TASOVKSI ◽  
R. RADHAKRISHNAN

The effects of substitution of micron size powder by nanometer size powder in magnetorheological (MR) fluids are investigated in this study. Three MR fluid samples containing iron powder with 45% weight fraction in a carrier fluid were made by Materials Modification Inc. The difference among these three fluids is size of the magnetic particles. The first MR fluid sample contained only micron size iron powder with 10μm particle size. In the second sample, 5% micron iron was substituted with nano powders having 30~40nm mean diameter, while the third sample had 37.5% micron powder and 7.5% nano powder. Rheological tests were conducted on the three samples using a parallel disk rheometer. Highest yield stress was observed in the second MR fluid sample containing 40% micron and 5% nano iron powder. By replacing only 5% micron iron powder with nanoparticles, we achieved substantial increment in yield stress. However, when nano powder content is increased to 7.5%, the yield stress decreases and is lower than that in the all micron MR fluid. Thus, by doping a reasonable percent of nano iron powder in the MR fluid, a substantial change in the rheological characteristics is obtainable. Further investigations of effects of nano iron powder in MR fluids for higher weight fraction MR fluids will be carried out in future.


Author(s):  
N. M. Wereley ◽  
J. Trihan ◽  
S. Kotha ◽  
A. Suggs ◽  
R. Radhakrishnan ◽  
...  

Conventional magnetorheological (MR) fluids are suspensions of micron sized particles in a hydraulic or silicone oil carrier fluid. Recently, research has been conducted into the advantages of using bidisperse MR fluids, which are mixtures of two different powder sizes in the MR suspension. The MR fluids investigated here use a mixture of conventional micron sized particles and nanometer sized particles. The settling rate of such bidisperse fluids using nanometer sized particles is reduced because thermal convection and Van der Waals forces experienced by the nanometer sized particles compete favorably with gravitational forces. This reduction in the settling rate comes at a cost of a reduction in the maximum yield stress that can be manifested by such an MR fluid at its saturation magnetization. There is a measurable and predictable variation in rheological properties as the weight percent of the nanometer sized particles is increased relative to the weight percent of micron size particles, while maintaining a constant solids loading in the MR fluid samples. All bidisperse fluids tested in this study have a solids loading of 60 weight% (wt%) of Fe particles. This study investigates the effect of increasing the weight percent of 30 nanometer (nominal) Fe particles relative to 30 micron (nominal) Fe particles on rheological characteristics such as yield stress and postyield viscosity. The goal of this study is to find an optimal composition of the bidisperse fluid that provides the best combination of high yield stress and low settling rate based on empirical measurements. The applicability of rheological models, such as the Bingham-plastic and the Hershel Buckley models, to the measured flow curves of these MR fluids is also presented.


Soft Matter ◽  
2017 ◽  
Vol 13 (39) ◽  
pp. 7207-7221 ◽  
Author(s):  
Daniel Vågberg ◽  
Brian P. Tighe

The viscosity of magnetorheological (MR) fluids can be increased dramatically by applying a magnetic field. Some MR fluids display a clear yield stress, while others do not. Using computer simulations, we rationalize this non-universal behavior in terms of the viscous interactions between particles and the carrier fluid.


2011 ◽  
Vol 25 (07) ◽  
pp. 979-985 ◽  
Author(s):  
WEI HU ◽  
NORMAN M. WERELEY

The high shear rate behavior of MR fluids is investigated using a concentric rotational cylinder viscometer fabricated in-house. The rotational cylinder viscometer is designed such that a high shear rate of up to 30,000 s-1 can be applied to the MR fluid in a pure shear flow mode. As a comparison, the maximum shear rate of a commercially available parallel disk type rheometer is only up to 1,000 s-1. To determine the shear rate of the MR fluid in the viscometer, an exact expression between torque and angular velocity is established. The yield stress and viscosity of the MR fluid is determined by fitting the expression into the measured torque and angular velocities, and the shear stress as a function of the shear rate is further derived. The magnetic filed strength across the fluid gap is determined based on an electromagnetic field analysis, and the yield stress and viscosity of the fluid as a function of the magnetic filed is established. Specifically, the stability of the MR fluid at high shear rate is also evaluated. Two commercially available MR fluids, i.e., Lord's MRF-132DG and MRF-140CG, are investigated using the rotational cylinder viscometer, and the testing results are compared to the manufacturer's data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benoit Tallon ◽  
Artem Kovalenko ◽  
Olivier Poncelet ◽  
Christophe Aristégui ◽  
Olivier Mondain-Monval ◽  
...  

AbstractNegative refraction of acoustic waves is demonstrated through underwater experiments conducted at ultrasonic frequencies on a 3D locally resonant acoustic metafluid made of soft porous silicone-rubber micro-beads suspended in a yield-stress fluid. By measuring the refracted angle of the acoustic beam transmitted through this metafluid shaped as a prism, we determine the acoustic index to water according to Snell’s law. These experimental data are then compared with an excellent agreement to calculations performed in the framework of Multiple Scattering Theory showing that the emergence of negative refraction depends on the volume fraction $$\Phi$$ Φ of the resonant micro-beads. For diluted metafluid ($$\Phi =3\%$$ Φ = 3 % ), only positive refraction occurs whereas negative refraction is demonstrated over a broad frequency band with concentrated metafluid ($$\Phi =17\%$$ Φ = 17 % ).


2006 ◽  
Vol 129 (6) ◽  
pp. 697-704 ◽  
Author(s):  
A. G. Agwu Nnanna

This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3–H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2⩽ϕ⩽2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.


Author(s):  
Olusegun Adigun Afolabi ◽  
Krishnan Kanny ◽  
Turup Mohan

AbstractEpoxy syntactic foams (SF) filled with hollow glass microspheres (HGM) were prepared by simple resin casting method and characterization in this study. The effect of varying the amount of HGM on the specific mechanical and water absorption properties of SF composites were investigated. Five different composition of SF (SFT60-0.5 to SFT60-2.5) were compared with the neat epoxy matrix. The wall thickness of the microballoons differ because of its different percentile size distribution (10th, 50th and 90th), which reflects in its density variation. The results show that the specific tensile and flexural strength increases with an increasing filler (HGM) content. The density of SF filled with HGM reduces with increasing volume fraction of filler content. Scanning electron microscopy was done on the failed samples to examine the fractured surfaces. The water absorption capacity of the SF was also investigated as it relates to the HGM volume fraction variation. All the syntactic foam composition shows a better diffusion coefficient capacity than the neat epoxy resin. This makes it applicable in structural purposes and several marine application products such as Autonomous Ultimately Vehicle (AUV).


2012 ◽  
Vol 32 (4-5) ◽  
pp. 259-263 ◽  
Author(s):  
Ji-Zhao Liang ◽  
Ming-Qiang Zhong

Abstract Polypropylene (PP) composites filled with hollow glass beads (HGB) were prepared by means of a twin-screw extruder. The extrudate swell ratio (B) of the PP/HGB composite melts was measured using a melt flow indexer under experimental conditions, with temperatures from 190°C to 230°C and loads varying from 1.20 kg to 7.50 kg, to identify the effects of the extrusion conditions and the particle size and content on the extrudate swell of composite melts. The results showed that the value of B of the composites increased nonlinearly with an increase of shear stress, while it decreased linearly with a rise of temperature. When the load and temperature were constant, the value of B increased nonlinearly with an increase of the HGB diameter, whereas it reduced nonlinearly with an increase of the HGB volume fraction. This should be attributed to the elastic deformation energy stored in the flow of the composite melts, which was decreased with an increase of the HGB number and content.


Sign in / Sign up

Export Citation Format

Share Document