Conserving Energy by Expanding the Thermal Comfort Envelope

1978 ◽  
Vol 22 (1) ◽  
pp. 533-536 ◽  
Author(s):  
Frederick H. Rohles

Standard 55–74 entitled “Thermal Conditions for Human Occupancy” which is published by The American Society of Heating, Refrigerating, and Air Conditioning Engineers, (ASHRAE) defines an “acceptable thermal environment” as one in which “at least 80 percent of the normally clothed men and women while engaged in indoor sedentary or near sedentary activities would express thermal comfort.” This is pictured on the ASHRAE psychrometric chart as an envelope that includes dry bulb temperatures between 74°F and 77°F at relative humidities between 20% and 60%. The paper will describe five human factors approaches that have been used or are being considered to expand this envelope and thereby conserve energy. These are (1) the use of small radiant heaters which are installed in the modesty panels of desks so comfort may be attained at lower temperatures; (2) the demonstration that night set-back of thermostats to temperatures as low as 50°F do not effect sleeping patterns; (3) the role that interior decor can play in making people feel warmer; (4) the effect that temperature “swings” associated with solar heating and cooling has upon acceptance of the thermal environment and (5) the acceptance of a reduced quality of indoor air as a result of heating with an increased ratio of recirculated air to outside air.

2019 ◽  
Vol 41 (5) ◽  
pp. 561-585 ◽  
Author(s):  
Fangliang Zhong ◽  
John K Calautit ◽  
Ben R Hughes

After winning the bid of the FIFA’s World Cup 2022, Qatar is facing the greatest challenges in terms of minimizing substantial energy consumptions for air-conditioning of stadiums and maintaining aero-thermal comfort for both players and spectators inside stadiums. This paper presents the results of temperature distributions and wind environment of the original stadium under the hot-humid climate and improvements on them for optimized scenarios of cooling jets. A combined computational fluid dynamics and building energy simulation approach was used to analyse the cooling performance and energy consumption per match of cooling air jets for 10 scenarios with different supply velocities, supply temperatures and locations of jets. The optimal scenario is to employ vertical jets above the upper tiers at supply temperature of 20°C and velocities of 2–12 m/s, integrated with horizontal jets of the same temperature at the lower tiers with 4 m/s and around the pitch with 7 m/s. This scenario can maintain the spectator tiers at an average temperature of 22°C and reduce the maximum predicted percentage of dissatisfied of thermal comfort from the original 100% to 63% for the pitch and 19% for the tiers, respectively. In terms of the energy consumption for the air-conditioning system per match, compared with one of the 2010 South Africa World Cup stadiums Royal Bafokeng stadium which consumed approximately 22.8 MWh energy for air-conditioning in winter (highest outdoor temperature 24.4°C), the maximum energy consumption of the optimal scenario in November (highest outdoor temperature 34.2°C) can reach 108 MWh. In addition, the spectator zones with scenario 8 have the potential to be resilient to the seasonal change of outdoor temperature if slight modifications of the supply velocities and precise temperature control on the spectator zones are applied. Moreover, the configurations presented in this paper can be used as a foundation of jets arrangement for future stadium retrofits in the hot climates. Practical application: This study assesses the aero-thermal conditions of a case study stadium under the hot climate of Qatar and explores the potential of applying cooling jets with different supply velocities, supply temperatures and their locations on the enhancement of both thermal and wind environment of spectator tiers and pitch. The assessment of the original stadium indicates that the ascending curved roof structure impedes the fresh air entering into the stadium and results in an asymmetric temperature distribution on the spectator tiers. The optimized design suggests a combination of vertical jets under the roof and both three arrays of horizontal jets at lower tiers and around pitch for future stadium optimizations in hot climates. It also recommends enhancing the thermal conditions on the pitch by optimizing the velocity of horizontal jets around the pitch. Moreover, the future design of the exact stadiums to be resilient to the seasonal changing outdoor temperature can be implemented based on scenario 8.


2014 ◽  
Vol 522-524 ◽  
pp. 491-494
Author(s):  
Hui Xing Li ◽  
Cheng Cheng Tang ◽  
Guo Hui Feng ◽  
Rui Yang Gao

China's higher education has entered a rapid development period, the total number of students increased dramatically, using the north-south double-sided architectural design of high-rise dormitory buildings constantly emerge. The indoor air quality of dormitory using central air-conditioning for heating and cooling has become the focus problem. To the north of the dormitory air conditioning as the research object, under the same condition and simulate and analysis the airflow of the side air supply and the top air supply of the air conditioning and ventilation room. The results show that the room adopt the side air supply form has more superiority in comfort and economy.


Author(s):  
Abdul Manan Dauda

The research seeks to understand the effects of internal courtyards onthermal comfort conditions in compound houses in Ghana’s TamaleMetropolitan area. Internal courtyards are an integral part of the design ofcompound houses in this location.Their inclusion in building designs is largely as a point of domestic activitysuch as cooking and cleaning and also for social interaction. However, a lotof interchanges in thermal conditions between structures and the outdoorstake place within these internal courtyards. Various design details of thebuilding will engender different thermal responses of the internal courtyard.This paper assesses thermal comfort in compound houses as againstbungalow type houses in the Tamale Metropolis, Ghana by the applicationof the Predicted Percentage of Dissatisfied Persons (PPD) and PredictedMean Votes (PMV) model. This prototype compares with the InternationalStandards Organization (ISO) 7730 and American Society of Heating,Refrigeration and Air-Conditioning Engineers (ASHRAE) Standard 55(estimated values between 23˚C - 26˚C seen as the allowable temperatures).Ambient indoor conditions (dry bulb temperature and relative humidity)of five (5) buildings each from the two building typologies from wererecorded over a period of ten calendar months. These ambient conditionswere analyzed, consequently generating the Predicted Percentage ofDissatisfied Persons (PPD) and Predicted Mean Votes (PMV) recordings.The investigations uncovered relatively high PPD - PMV recordingsrelating to the Bungalow type buildings while the compound housesattune to the comfort zone. The Actual Mean Votes (AMV) of residentssuggests the two building typologies are all rated comfortable however; thecompound houses are rated above the bungalow type houses.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 326
Author(s):  
Wiwik Budiawan ◽  
Kazuyo Tsuzuki

Thermal comfort is crucial in satisfaction and maintaining quality sleep for occupants. In this study, we investigated the comfort temperature in the bedroom at night and sleep quality for Indonesian students during summer and winter. Eighteen male Indonesian students aged 29 ± 4 years participated in this study. The participants had stayed in Japan for about six months. We evaluated the sleep parameters using actigraphy performed during summer and winter. All participants completed the survey regarding thermal sensation, physical conditions, and subjective sleepiness before sleep. The temperature and relative humidity of participants’ bedrooms were also measured. We found that the duration on the bed during winter was significantly longer than that during summer. However, sleeping efficiency during winter was significantly worse than that during summer. The bedroom temperature of the participants was in the range of comfort temperature in Indonesia. With the average bedroom air temperature of 22.2 °C, most of the participants still preferred “warm” and felt “slightly comfortable” during winter. The average comfort temperature each season calculated using the Griffiths method was 28.1 °C during summer and 23.5 °C during winter. In conclusion, differences in adaptive action affect bedroom thermal conditions. Furthermore, habits encourage the sleep performance of Indonesian students.


2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2020 ◽  
pp. 014459872096921
Author(s):  
Yanru Li ◽  
Enshen Long ◽  
Lili Zhang ◽  
Xiangyu Dong ◽  
Suo Wang

In the Yangtze River zone of China, the heating operation in buildings is mainly part-time and part-space, which could affect the indoor thermal comfort while making the thermal process of building envelope different. This paper proposed to integrate phase change material (PCM) to building walls to increase the indoor thermal comfort and attenuate the temperature fluctuations during intermittent heating. The aim of this study is to investigate the influence of this kind of composite phase change wall (composite-PCW) on the indoor thermal environment and energy consumption of intermittent heating, and further develop an optimization strategy of intermittent heating operation by using EnergyPlus simulation. Results show that the indoor air temperature of the building with the composite-PCW was 2–3°C higher than the building with the reference wall (normal foamed concrete wall) during the heating-off process. Moreover, the indoor air temperature was higher than 18°C and the mean radiation temperature was above 20°C in the first 1 h after stopping heating. Under the optimized operation condition of turning off the heating device 1 h in advance, the heat release process of the composite-PCW to the indoor environment could maintain the indoor thermal environment within the comfortable range effectively. The composite-PCW could decrease 4.74% of the yearly heating energy consumption compared with the reference wall. The optimization described can provide useful information and guidance for the energy saving of intermittently heated buildings.


Author(s):  
Somaye A. Mohamadi ◽  
Abdulraheem J. Ahmed

<span>Despite their complexity and uncertainty, air conditioning systems should provide the optimal thermal conditions in a building. These controller systems should be adaptable to changes in environmental parameters. In most air conditioning systems, today, there are On/Off controllers or PID in more advanced types, which, due to different environmental conditions, are not optimal and cannot provide the optimal environmental conditions. Controlling thermal comfort of an air conditioning system requires estimation of thermal comfort index. In this study, fuzzy controller was used to provide thermal comfort in an air conditioning system, and neural network was used to estimate thermal comfort in the feedback path of the controller. Fuzzy controller has a good response given the non-linear features of air conditioning systems. In addition, the neural network makes it possible to use thermal comfort feedback in a real-time control.</span>


2021 ◽  
Vol 246 ◽  
pp. 03005
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
Mª Manuela Lúcio ◽  
Hazim Awbi

In this numerical study the energy production in solar collectors in a University building used to improve the internal thermal conditions is made. Passive and active solutions, using external solar collector and internal thermo-convectors, are used. The numerical simulation, in transient conditions, is done for a winter typical day with clean sky. This numerical study was carried out using a software that simulates the Building Dynamic Response with complex topology in transient conditions. The software evaluates the human thermal comfort and indoor air quality levels that the occupants are subjected, Heated Ventilation and Air Conditioned energy consumption, indoor thermal variables and other parameters. The university building has 107 compartments and is located in a Mediterranean-type environment. External solar water collectors, placed above the building’s roof, and internal thermo-convectors of water/air type, using mixing ventilation, are used as passive and active strategies, respectively. The thermal comfort level, using the Predicted Mean Vote index, and the indoor air quality, using the carbon dioxide concentration, are evaluated. The results show that in winter conditions the solar collectors improve the thermal comfort conditions of the occupants. The indoor air quality, in all ventilated spaces, is also guaranteed.


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


Sign in / Sign up

Export Citation Format

Share Document