Vibration control of high-speed rotor supported by hybrid foil-magnetic bearing with sudden imbalance

2015 ◽  
Vol 23 (8) ◽  
pp. 1296-1308 ◽  
Author(s):  
Sena Jeong ◽  
Yong Bok Lee

A hybrid foil-magnetic bearing (HFMB) was successfully studied as a vibration isolator by introducing a sudden imbalance or an unexpected disturbance during turbine/rotor operation. This HFMB is used to achieve stability during transient vibration behavior. The HFMB consists of two oil-free bearing technologies: an active magnetic bearing (AMB) and air foil bearing (AFB). Using both technologies takes advantage of the strengths of each bearing while compensating for their inherent weaknesses. In addition, the HFMB has good dynamic characteristics, and the damping can be adjusted using the appropriate gain selection for the AMB controller. Based on these unique features, dynamic stability can be enhanced, even if a sudden imbalance occurs while the rotor is operating. In this study, a rigid rotor was operated at up to 12,000 rpm and tested using a control algorithm to reduce the sudden imbalance vibration amplitudes. The experiment was conducted under the situation that the mass dropped out at 6,000 rpm. In order to validate the stability performance of the HFMB with a sudden mass loss, the vibration response results for the AFB and HFMB were compared. When applying the HFMB, the asynchronous vibration was suppressed, and the 1x vibration results showed reductions of almost 30%. When the sudden mass loss occurred, the magnetic control force was remarkably effective at reducing the asynchronous vibration of the rotor supported by the HFMB. In conclusion, it was experimentally verified that using the HFMB made sudden imbalance vibration control possible during rotor operation with an air foil bearing. In this respect, the HFMB has the characteristics of high stiffness/damping, which prevent rubbing and suppress excessive vibration due to a sudden imbalance event.

Author(s):  
Kamal Kumar Basumatary ◽  
Karuna Kalita ◽  
Sashindra K. Kakoty ◽  
Seamus D. Garvey

Abstract The hybrid Gas Foil Bearings combining the Gas Foil Bearing and Active Magnetic Bearing is a possibility for application in high-speed turbomachinery and a few developments have been made in this context. As such, the cost of conventional Gas Foil Bearing increases due to its requirement of precise manufacturing method and the coating material for the top foil and bump foil. In case of Active Magnetic Bearing, the normal electrical arrangement includes a multiplicity of independently controlled current sources usually at least four drives per bearing which increases its cost. Therefore, the hybrid Gas Foil Bearing will have much higher cost. In this work, a new electrical arrangement for the electromagnetic actuators of the hybrid Gas Foil Bearing has been proposed. The new arrangement requires only two drives per bearing and the bias current has been provided (in the same set of windings) through a simple rectifier with small series choke and shunt capacitor. As the number of drives required is less, the proposed bearing will have low cost. Implementing the new approach, the force vectors are achieved using only two current-source drives whereas the usual conventional arrangement requires four such drives. Numerical simulations are performed to explore the capabilities of the low cost bearing.


Author(s):  
Sena Jeong ◽  
Yong Bok Lee

A hybrid foil-magnetic bearing (HFMB) consists of an air foil bearing (AFB) and an active magnetic bearing (AMB). The HFMB, inherently proposed as a backup bearing for an AMB, has many advantages, such as good controllability and the ability to exhibit preload sharing with the two types of bearings (i.e., the AFB and AMB) in high-speed turbomachinery. However, because the bearing has a limited clearance, the eccentric position of the rotor affects its stability and the reliability parameters of the AFBs such as the initial preload rub. In this study, a rigid rotor supported by an HFMB was operated at speeds of up to 18 kr/min and was tested using a proportional-derivative control algorithm, in order to reduce the vibration amplitude. In addition, to elucidate the effect of the initial eccentric position of the rotor, the control algorithm was started from the initial position of the rotor (X: from –100 to 100 µm and Y: from –80 to 200 µm) using a constant gain value. When the HFMB was active, the magnetic control force was remarkably effective in reducing the subsynchronous vibration of the rotor supported by the HFMB. Eccentricities of 0.2–0.5 corresponded to appropriate rotor positions for the hybrid bearing, and the corresponding load distribution of the AFB was found to be the optimal one. In addition, the proportional-derivative control gain was not very high. The performance of the bearing could be improved further by controlling the eccentricity. An HFMB was tested experimentally, and it was verified that it is possible to determine the effective load carrying capacity for a specific load distribution of the AFB.


2006 ◽  
Vol 129 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Naohiko Takahashi ◽  
Hiroyuki Fujiwara ◽  
Osami Matsushita ◽  
Makoto Ito ◽  
Yasuo Fukushima

In active magnetic bearing (AMB) systems, stability is the most important factor for reliable operation. Rotor positions in radial direction are regulated by four-axis control in AMB, i.e., a radial system is to be treated as a multi-input multioutput (MIMO) system. One of the general indices representing the stability of a MIMO system is “maximum singular value” of a sensitivity function matrix, which needs full matrix elements for calculation. On the other hand, ISO 14839-3 employs “maximum gain” of the diagonal elements. In this concept, each control axis is considered as an independent single-input single-output (SISO) system and thus the stability indices can be determined with just four sensitivity functions. This paper discusses the stability indices using sensitivity functions as SISO systems with parallel/conical mode treatment and/or side-by-side treatment, and as a MIMO system with using maximum singular value; the paper also highlights the differences among these approaches. In addition, a conversion from usual x∕y axis form to forward/backward form is proposed, and the stability is evaluated in its converted form. For experimental demonstration, a test rig diverted from a high-speed compressor was used. The transfer functions were measured by exciting the control circuits with swept signals at rotor standstill and at its 30,000 revolutions/min rotational speed. For stability limit evaluation, the control loop gains were increased in one case, and in another case phase lags were inserted in the controller to lead the system close to unstable intentionally. In this experiment, the side-by-side assessment, which conforms to the ISO standard, indicates the least sensitive results, but the difference from the other assessments are not so great as to lead to inadequate evaluations. Converting the transfer functions to the forward/backward form decouples the mixed peaks due to gyroscopic effect in bode plot at rotation and gives much closer assessment to maximum singular value assessment. If large phase lags are inserted into the controller, the second bending mode is destabilized, but the sensitivity functions do not catch this instability. The ISO standard can be used practically in determining the stability of the AMB system, nevertheless it must be borne in mind that the sensitivity functions do not always highlight the instability in bending modes.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Liu ◽  
Shuaishuai Ming ◽  
Siyao Zhao ◽  
Jiyuan Han ◽  
Yaxin Ma

In this paper, in order to solve the problem of unbalance vibration of rigid rotor system supported by the active magnetic bearing (AMB), automatic balancing method is applied to suppress the unbalance vibration of the rotor system. Firstly, considering the dynamic and static imbalance of the rotor, the detailed dynamic equations of the AMB-rigid rotor system are established according to Newton’s second law. Then, in order to rotate the rotor around the inertia axis, the notch filter with phase compensation is used to eliminate the synchronous control current. Finally, the variable-step fourth-order Runge–Kutta iteration method is used to solve the unbalanced vibration response of the rotor system in MATLAB simulation. The effects of the rotational speed and phase compensation angle on the unbalanced vibration control are analysed in detail. It is found that the synchronous control currents would increase rapidly with the increase of rotational speed if the unbalance vibration cannot be controlled. When the notch filter with phase shift is used to balance the rotor system automatically, the control current is reduced significantly. It avoids the saturation of the power amplifier and reduces the vibration response of the rotor system. The rotor system can be stabilized over the entire operating speed range by adjusting the compensation phase of the notch filter. The method in the paper is easy to implement, and the research result can provide theoretical support for the unbalance vibration control of AMB-rotor systems.


Author(s):  
Bruno Wagner

This paper recalls the principles and main features of the active magnetic bearings and especially the advantages for turbomachines. Oil-free working and vibration control are part of them. Field experiences are described for different shaft line configurations. Step by step we are going to get totally rid of oil with the introduction of active magnetic bearings together with dry gas seals and gearless drive. Future machines will take the benefit of all this field experience. The trend of the design optimization is the active magnetic bearings in the process gas itself, for a length reduction of shafts. But at the present stage, the active magnetic bearing is a proven technology today.


Author(s):  
Erik E. Swanson ◽  
Hooshang Heshmat ◽  
James Walton

To meet the advanced bearing needs of modern turbomachinery, a hybrid foil-magnetic hybrid bearing system was designed, fabricated and tested in a test rig designed to simulate the rotor dynamics of a small gas turbine engine (31 kN to 53 kN thrust class). This oil-free bearing system combines the excellent low and zero-speed capabilities of the magnetic bearing with the high load capacity and high speed performance of the compliant foil bearing. An experimental program is described which documents the capabilities of the bearing system for sharing load during operation at up to 30,000 RPM and the foil bearing component’s ability to function as a back-up in case of magnetic bearing failure. At an operating speed of 22,000 RPM, loads exceeding 5300 N were carried by the system. This load sharing could be manipulated by an especially designed electronic control algorithm. In all tests, rotor excursions were small and stable. During deliberately staged magnetic bearing malfunctions, the foil bearing proved capable of supporting the rotor during continued operation at full load and speed, as well as allowing a safe rotor coast-down. The hybrid system tripled the load capacity of the magnetic bearing alone and can offer a significant reduction in total bearing weight compared to a comparable magnetic bearing.


Author(s):  
Sena Jeong ◽  
Doyoung Jeon ◽  
Yong Bok Lee

In this study, experimental and analytical analyses of the vibration stability of a 225 kW class turbo blower with a hybrid foil–magnetic bearing (HFMB) were performed. First, critical speed and unbalance vibration responses were examined as part of the rotordynamic research. Its shaft diameter was 71.5 mm, its total length was 693 mm, and the weight of the rotor was 17.8 kg. The air foil bearing (AFB) utilized was 50 mm long and had a 0.7 aspect ratio. In the experiments conducted, excessive vibration and rotor motion instability occurred in the range 12,000–15,000 rpm, which resulted from insufficient dynamic pressure caused by the length of the foil bearing being too short. Consequently, as the rotor speed increased, excessive rotor motion attributable to aerodynamic and bearing instability became evident. This study therefore focused on improving rotordynamic performance by rectifying rigid mode unstable vibration at low speed, 20,000 rpm, and asynchronous vibration due to aerodynamic instability by using HFMB with vibration control. The experimental results obtained were compared for each bearing type (AFB and HFMB) to improve the performance of the vibration in the low-speed region. The experimental results show that the HFMB technology results in superior vibration stability for unbalance vibration and aerodynamic instability in the range 12,000–15,000 rpm (200–250 Hz). The remarkable vibration reduction achieved from vibration control of the HFMB–rotor system shows that oil-free turbomachinery can achieve excellent performance.


Sign in / Sign up

Export Citation Format

Share Document