Self-excited Vibration Control of the Flexible Planar Parallel 3-RRR Robot

2018 ◽  
Vol 25 (2) ◽  
pp. 351-361
Author(s):  
Zhi-cheng Qiu ◽  
Jie Yang ◽  
Xian-min Zhang

A self-excited vibration active control approach for a 3-RRR flexible planar parallel robot is developed to improve accuracy and stability. The 3-RRR parallel flexible robot experimental setup is constructed. From the motion experiments, it is demonstrated that the residual vibration can be converted to self-excited vibration at a high-speed motion, which will affect the stability and positioning precision of the platform. To suppress the self-excited vibration owing to flexibility, friction, backlash, coupling, and other nonlinear factors, a nonlinear controller and a fuzzy control algorithm are designed to attenuate the self-excited vibration. Experiments are conducted in different positions of the 3-RRR flexible parallel robot. The experimental results demonstrate that the investigated control methods can suppress the self-excited vibration effectively.

Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Qing Li

Due to the demands from the robotic industry, robot structures have evolved from serial to parallel. The control of parallel robots for high performance and high speed tasks has always been a challenge to control engineers. Following traditional control engineering approaches, it is possible to design advanced algorithms for parallel robot control. These approaches, however, may encounter problems such as heavy computational load and modeling errors, to name it a few. To avoid heavy computation, simplified dynamic models can be obtained by applying approximation techniques, nevertheless, performance accuracy will suffer due to modeling errors. This paper suggests applying an integrated design and control approach, i.e., the Design For Control (DFC) approach, to handle this problem. The underlying idea of the DFC approach can be illustrated as follows: Intuitively, a simple control algorithm can control a structure with a simple dynamic model quite well. Therefore, no matter how sophisticate a desired motion task is, if the mechanical structure is designed such that it results in a simple dynamic model, then, to design a controller for this system will not be a difficult issue. As such, complicated control design can be avoided, on-line computation load can be reduced and better control performance can be achieved. Through out the discussion in the paper, a 2 DOF parallel robot is redesigned based on the DFC concept in order to obtain a simpler dynamic model based on a mass-balancing method. Then a simple PD controller can drive the robot to achieve accurate point-to-point tracking tasks. Theoretical analysis has proven that the simple PD control can guarantee a stable system. Experimental results have successfully demonstrated the effectiveness of this integrated design and control approach.


Author(s):  
Giuseppe Catania ◽  
Nicolo` Mancinelli

Productivity of high speed milling operations can be seriously limited by chatter occurrence. Several studies on this self-excited vibration can be found in the literature: simple models (1 or 2 dofs) are proposed, i.e. a lumped parameter model of the milling machine being excited by regenerative, time-varying cutting forces. In this study, a model of the milling machine is proposed: the machine frame and the spindle were modeled by an experimentally evaluated modal model, while the tool was modeled by a discrete modal approach, based on the continuous beam shape analytical eigenfunctions. The regenerative cutting force components lead to a set of Delay Differential Equations (DDEs) with periodic coefficients; DDEs were numerically integrated for different machining conditions. The stability lobe charts were evaluated using the semi-discretization method [6–7] that was extended to n dofs models (with n >2). Differences between the stability charts obtained by the low dofs models and the stability charts obtained by the new n dofs model are pointed out. Time histories and spectra related to the vibratory behavior of the system were numerically obtained to verify the effectiveness of the stability charts obtained with the n dofs modal model.


Author(s):  
Giuseppe Catania ◽  
Nicolo` Mancinelli

High removal rate in milling operations can be limited by chatter occurrence. Several studies on this self-excited vibration can be found in the literature: simple models (1 or 2 dofs) are proposed, i.e. a lumped parameter model of the milling machine being excited by regenerative, time-varying cutting forces. In this study, the machine tool spindle was modeled by a discrete modal approach, based on the continuous beam shape, analytical eigenfunctions, while the eigenvalues were mainly experimentally identified. The regenerative cutting force components lend to a set of Delay Differential Equations (DDEs) with periodic coefficients; DDEs were numerically integrated for different machining conditions. The stability lobe chart was evaluated using the semi-discretization method. Time histories, spectra and Poincare´ maps related to the vibratory behavior of the system were numerically obtained and differences with respect to the bifurcations predicted by the simplest models known in literature are pointed out. Some different behaviors in the shape of the stability lobe charts and in the spectra of the chatter vibrations were also observed.


2020 ◽  
pp. 107754632097740
Author(s):  
Long-huan Yu ◽  
Zhi-cheng Qiu ◽  
Xian-min Zhang

The self-excited vibration of flexible planar 3-RRR parallel manipulators is converted from the residual vibration after high-speed motion and is a resonance of the strongly coupled and nonlinear electromechanical system. This makes the active vibration control quite a challenging task. In this study, we attempt to adopt the radial basis function neural network control algorithm based on acceleration feedback for suppressing the self-excited vibration and guarantee its position accuracy. The stability of the controlled system is proved by the Lyapunov concept. Self-excited vibration control experiments are conducted near the singular region. Experimental results demonstrate the effectiveness of our adopted controller.


Author(s):  
Masakazu Takeda ◽  
Masahiro Watanabe

This paper presents experiments and an analysis on self-excited vibration of a plate supported by air pressure in a floating conveying machine. In this study, the instability conditions are examined by theoretical analysis in consideration of the effect of compressibility of air in a chamber. The system’s characteristic equation is derived from the plate motion coupled with equations of the gap flow between the plate and the chamber surface. The vibration characteristics and the instability conditions of the self-excited vibration are examined through experiments. The stability of the plate is affected by an air flow rate, a mass of the plate, a spring stiffness of the plate. We clarified those influences on the instability conditions of the self-excited vibration. The unsteady fluid force acting on the plate (bottom surface) is investigated by measuring the unsteady pressure. The local work done by the unsteady fluid force is also clarified. Lastly, the instability mechanism and important parameters of the self-excited vibration are discussed based on the theoretical model and experimental results.


Author(s):  
Xuxian Zhu ◽  
Zhicheng Qiu ◽  
Lingbo Xie ◽  
Xianmin Zhang

Self-excited vibration of parallel robots can seriously affect the motion performance and damage the mechanical structure. In order to study the self-excited vibration characteristics of a 3-PRR (where P and R represent the prismatic and revolute joints respectively and the underlined letter represents the actuated joint) planar parallel robot, dynamic model is firstly established and the singularity is analyzed theoretically. Then the dynamic characteristics at internal and boundary singularities are both explored experimentally. The motion form and generating mechanism of the self-excited vibration are researched. The influencing factors on vibration frequency are obtained and the self-excited vibration during trajectory tracking motion is analyzed. Finally, a singularity escaping strategy is proposed and tested. Theoretical analysis and experimental results show that the performance of parallel robot deteriorates dramatically at singularities. Nevertheless, the parallel robot can pass through the internal singularity successfully with optimized load and motion speed so that the workspace can be expanded. The 3-PRR planar parallel robot exhibits self-excited vibration at internal singularities, which is mainly caused by the singularity, self-regulation of motors and the closed-chain coupling effect. The vibration frequency is mainly determined by singular configuration and the structural parameters. The parallel robot can maintain self-excited vibration state while carrying out trajectory tracking under a singular attitude angle. Moreover, the proposed singularity escaping strategy is verified to be feasible so that the self-excited vibration can be eliminated effectively.


1946 ◽  
Vol 13 (3) ◽  
pp. A211-A220
Author(s):  
A. C. Hagg

Abstract The self-excited vibration caused by the lubricating films of journal bearings and commonly called oil-film whirl or oil whip is discussed. The upper limit of whirling frequency has been found to be one-half rotational frequency in the general case; actually the phenomenon will manifest itself at a frequency which is invariably below this limit. Stability criteria have been developed for certain common systems in terms of bearing and rotor parameters. The tilting-pad bearing of Michell has been established as a so-called “stable” or “nonwhirling” bearing. This bearing and related types are probably the only oil-film journal bearings which are incapable of exciting oil whip, regardless of the system to which they are applied. Qualitatively the results of the paper appear to be in agreement with observations. In certain cases, results have been substantiated experimentally.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jinhui Li ◽  
Jie Li ◽  
Danfeng Zhou ◽  
Lianchun Wang

This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.


Author(s):  
BW Wu ◽  
QF Qiao ◽  
GX Chen ◽  
JZ Lv ◽  
Q Zhu ◽  
...  

This paper conducts a detailed investigation into the formation mechanism of wheel polygonalization in high-speed trains and its influence factors through numerical simulation. A finite element model including two rails, one wheelset, and three disc brake units is set up to study the formation mechanism of wheel polygonalization in high-speed trains based on the point of view of frictional self-excited vibration. Using the finite element complex analysis, the dynamic stability of the wheelset–track–disc brake system is studied. In addition, the influence factors on the wheel polygonalization are investigated. Results show that when the longitudinal creep force is unsaturated, the 21-order polygonal wear of wheels occurs easily due to the self-excited vibration of the disc brake unit. When the longitudinal creep force is saturated, the 12-order polygonal wear of wheels probably occurs due to the self-excited vibration of the disc brake unit. The bigger the friction coefficient between the brake disc and pad, the greater the occurrence propensity of the polygonal wear of wheels. Vertical fastener damping that is too large or too small is disadvantageous for suppressing wheel corrugation. However, increasing the lateral fastener damping is beneficial for reducing the polygonal wear of wheels. When the vertical fastener stiffness is 25 MN/m, 7-order, 9-order, and 14-order wheel polygonalization can easily occur. A higher lateral fastener stiffness is beneficial for the suppression of wheel polygonalization.


Sign in / Sign up

Export Citation Format

Share Document