Stress analysis of an unsymmetric composite plate with variance of oval-shaped cutout

2015 ◽  
Vol 22 (4) ◽  
pp. 692-707 ◽  
Author(s):  
Jatin M Dave ◽  
Dharmendra S Sharma ◽  
Mihir M Chauhan

The complex variable method is used to obtain a solution for stress distribution around cutout of oval shape (and its variance) in an infinite plate having un-symmetric material properties with respect to mid plane. The mapping function used is for an oval shape but, using a different shape and size, a constant oval shape of different size as well as shapes such as a circle, ellipse, square, rectangle and eye are obtained. The stress functions are explicitly solved by incorporating the condition of single-valuedness of the out-of-plane displacement and the Schwarz formula along the hole boundary. The effects of the geometry, stacking sequence, material properties and loading angle on stresses and moments around a hole are studied. Some of the results are compared with existing literature and found to be in close agreement.

2011 ◽  
Vol 5 (1) ◽  
pp. 190-194
Author(s):  
Xianfeng Wang ◽  
Feng Xing ◽  
Norio Hasebe

The study of debonding is of importance in providing a good understanding of the bonded interfaces of dissimilar materials. The problem of debonding of an arbitrarily shaped rigid inclusion in an infinite plate with a point dislocation of thin plate bending is investigated in this paper. Herein, the point dislocation is defined with respect to the difference of the plate deflection angle. An analytical solution is obtained by using the complex stress function approach and the rational mapping function technique. In the derivation, the fundamental solutions of the stress boundary value problem are taken as the principal parts of the corresponding stress functions, and through analytical continuation, the problem of obtaining the complementary stress function is reduced to a Riemann-Hilbert problem. Without loss of generality, numerical results are calculated for a square rigid inclusion with a debonding. It is noted that the stress components are singular at the dislocation point, and a stress concentration can be found in the vicinity of the inclusion corner. We also obtain the stress intensity of a debonding in terms of the stress functions. It can be found that when a debonding starts from a corner of the inclusion and extends to another corner progressively, the stress intensity of the debonding increases monotonously; once the debonding extends over the corner points, the value of the stress intensity of the debonding gradually decreases. The relationships between the stress intensity of the debonding and the direction and position of the dislocation are also presented in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4104
Author(s):  
Nassr Al-Baradoni ◽  
Peter Groche

In this paper we present a novel, cost-effective camera-based multi-axis force/torque sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows the capturing of 3D displacements, occurring due to structure deformation under load in a single image. The displacement of defined features in size and position can be accurately analyzed and determined through digital image correlation (DIC). Validation on a prototype shows good accuracy of the measurement and a unique identification of all in- and out-of-plane displacement components under multiaxial load. Measurements show a maximum deviation related to the maximum measured values between 2.5% and 4.8% for uniaxial loads ( and between 2.5% and 10.43% for combined bending, torsion and axial load. In the course of the investigations, the measurement inaccuracy was partly attributed to the joint used between the sensor parts and the structure as well as to eccentric load.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


2011 ◽  
Vol 121-126 ◽  
pp. 3945-3949 ◽  
Author(s):  
Shih Heng Tung ◽  
Jui Chao Kuo ◽  
Ming Hsiang Shih ◽  
Wen Pei Sung

In recent years, 2D digital image correlation method (DIC) has been widely used in the measurement of plane strain. However, out-of-plane displacement could be induced during the loading and it would affect the measurement accuracy. Thus, a 3D measurement is necessary. This study utilizes a simplified 3D DIC to measure the geometry of an object before and after deformation. Then the finite element concept is involved to determine the strain after deformation. A flat plate specimen with in-plane and out-of-plane displacement is observed. Both 2D and 3D DIC are used to analyze the strain. The results show that using 3D DIC to measure strain is feasible and with a very good accuracy.


Sign in / Sign up

Export Citation Format

Share Document