Inactivation ofStaphylococcus aureusandEscherichia coliO157:H7 on fresh kashar cheese with pulsed ultraviolet light

2019 ◽  
Vol 25 (8) ◽  
pp. 680-691 ◽  
Author(s):  
Nene M Keklik ◽  
Adil Elik ◽  
Uğur Salgin ◽  
Ali Demirci ◽  
Gamze Koçer

Pulsed ultraviolet light is a potential postprocessing decontamination method which is able to reduce pathogens on solid food surfaces. Cheese surfaces may become easily contaminated with pathogens due to improper handling or contact with unhygienic surfaces during or after processing. In this study, the effects of pulsed ultraviolet light on Staphylococcus aureus and Escherichia coli O157:H7 on fresh kashar cheese were investigated. Pulsed ultraviolet light was applied to kashar cheese for different times (5, 15, 30, 45, 60 s) at 5, 8, and 13 cm from the quartz window in a pulsed ultraviolet light system. Based on the inactivation level, time, and visual evaluation, the most favorable treatment was determined as the 45 s–13 cm treatment (∼44 J/cm2). This treatment yielded about 1.62 and 3.02 log10reductions (cfu/cm2) for S. aureus and E. coli O157:H7, respectively, while did not alter (p>0.05) the pH, lipid oxidation, and moisture content of kashar cheese, except the color parameters. When 0.5 cm thick kashar cheese was treated with pulsed ultraviolet light at a distance of 5 cm from the quartz window, the highest energy transmittance was found to be about 9.16%. These findings demonstrate that pulsed ultraviolet light has the potential for postprocessing decontamination of semi-hard cheese surfaces.

2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2004 ◽  
Vol 67 (7) ◽  
pp. 1497-1500 ◽  
Author(s):  
Y. INATSU ◽  
M. L. BARI ◽  
S. KAWASAKI ◽  
K. ISSHIKI

The survival of gram-positive and gram-negative foodborne pathogens in both commercial and laboratory-prepared kimchi (a traditional fermented food widely consumed in Japan) was investigated. It was found that Escherichia coli O157:H7, Salmonella Enteritidis, Staphylococcus aureus, and Listeria monocytogenes could survive in both commercial and laboratory-prepared kimchi inoculated with these pathogens and incubated at 10°C for 7 days. However, when incubation was prolonged, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, whereas Salmonella Enteritidis and L. monocytogenes took 16 days to reach similar levels in commercial kimchi. On the other hand, E. coli O157:H7 remained at high levels throughout the incubation period. For laboratory-prepared kimchi, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, and L. monocytogenes took 20 days to reach a similar level. E. coli O157:H7 and Salmonella Enteritidis remained at high levels throughout the incubation period. The results of this study suggest that the contamination of kimchi with E. coli O157:H7, Salmonella Enteritidis, S. aureus, or L. monocytogenes at any stage of production or marketing could pose a potential risk.


2003 ◽  
Vol 66 (1) ◽  
pp. 25-30 ◽  
Author(s):  
XIUPING JIANG ◽  
JENNIE MORGAN ◽  
MICHAEL P. DOYLE

Inactivation profiles of Escherichia coli O157:H7 in inoculated bovine manure–based compost ingredients were determined by composting these ingredients in a bioreactor under controlled conditions. A 15-liter bioreactor was constructed to determine the fate of E. coli O157:H7 and changes in pH, moisture content, temperature, and aerobic mesophilic and thermophilic bacterial counts during composting. Fresh cow manure, wheat straw, cottonseed meal, and ammonium sulfate were combined to obtain a moisture content of ca. 60% and a carbon/nitrogen ratio of 29:1. The compost ingredients were held in the bioreactor at a constant external temperature of 21 or 50°C. Self-heating of the ingredients due to microbial activity occurred during composting, with stratified temperatures occurring within the bioreactor. At an external temperature of 21°C, self-heating occurred for 0 to 3 days, depending on the location within the bioreactor. E. coli O157:H7 populations increased by 1 to 2 log10 CFU/g during the initial 24 h of composting and decreased by ca. 3.5 log10 CFU/g near the bottom of the bioreactor and by ca. 2 log10 CFU/g near the middle and at the top during 36 days of composting. At an external temperature of 50°C, E. coli O157:H7 was inactivated rapidly (by ca. 4.9 log10 CFU/g at the top of the bioreactor, by 4.0 log10 CFU/g near the middle, and by 5.9 log10 CFU/g near the bottom) within 24 h of composting. When inoculated at an initial level of ca. 107 CFU/g, E. coli O157:H7 survived for 7 days but not for 14 days at all three sampling locations, as indicated by either direct plating or enrichment culture. At the top of the bioreactor a relatively constant moisture content of 60% was maintained, whereas the moisture content near the bottom decreased steadily to 37 to 45% over 14 days of composting. The pH of the composting mixture decreased to ca. 6 within 1 to 3 days and subsequently increased to 8 to 9. Results obtained in this study indicate that large populations (104 to 107 CFU/g) of E. coli O157:H7 survived for 36 days during composting in a bioreactor at an external temperature of 21°C but were inactivated to undetectable levels after 7 to 14 days when the external temperature of the bioreactor was 50°C. Hence, manure contaminated with large populations (e.g., 107 CFU/g) of E. coli O157:H7 should be composted for more than 1 week, and preferably for 2 weeks, when held at a minimum temperature of 50°C.


Author(s):  
Zeliha Yıldırım ◽  
Yaselin İlk ◽  
Metin Yıldırım

In this study, the effects of food preservative p-hydroxybenzoic acid and propyl-paraben on the inhibitory activity of enterocin KP produced by Enterococcus faecalis KP were determined. Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella Typhimurium, resistant to enterocin KP bacteriocin, were used as target organisms. The inhibitor activity of enterosin KP (1600 AU/ml) alone or in combination with p-hydroxybenzoic acid (%0.1-0.3) and propyl-paraben (%0.008-0.16) on the growth of Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella Typhimurium were determined. The inhibitory activity of enterocin KP was increased when used in combination with p-hydroxybenzoic acid and propyl-paraben at concentrations of 0.1-0.3% and 0.008-0.016%, respectively. Furthermore, Staphylococcus aureus, E. coli O157:H7 and Salmonella Typhimurium became sensitive to enterocin KP. In conclusion, the use of enterocin KP in combination with other food preservatives principles resulted in an increase in its inhibitory activity and spectrum.


2009 ◽  
Vol 72 (7) ◽  
pp. 1576-1584 ◽  
Author(s):  
JINKYUNG KIM ◽  
FENG LUO ◽  
XIUPING JIANG

The environmental variables affecting Escherichia coli O157:H7 regrowth in dairy manure compost were investigated. Factors evaluated were moisture content, strain variation, growth medium of inoculum, level of background microflora and inoculum, different days of composting, and acclimation at room temperature. A mathematical model was applied to describe E. coli O157 regrowth potential in compost. Repopulation occurred in autoclaved compost with a moisture content as low as 20% (water activity of 0.986) in the presence of background microflora of 2.3 to 3.9 log CFU/g. The population of all three E. coli O157 strains increased from ca. 1 to 4.85 log CFU/g in autoclaved compost, with the highest increase in the spinach-outbreak strain. However, E. coli O157 regrowth was suppressed by background microflora at ca. 6.5 log CFU/g. By eliminating acclimation at room temperature and increasing the inoculum level to ca. 3 log CFU/g, E. coli O157:H7 could regrow in the presence of high levels of background microflora. E. coli O157:H7 regrowth in the autoclaved compost collected from the field study was evident at all sampling days, with the population increase ranging from 3.49 to 6.54 log CFU/g. The fate of E. coli O157:H7 in compost was well described by a Whiting and Cygnarowicz-Provost model, with R2 greater than 0.9. The level of background microflora was a significant factor for both growth and death parameters. Our results reveal that a small number of E. coli O157 cells can regrow in compost, and both background microflora and moisture content were major factors affecting E. coli O157:H7 growth.


Biomédica ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 11 ◽  
Author(s):  
Mónica Tatiana Herrera ◽  
Jhon Jhamilton Artunduaga ◽  
Claudia Cristina Ortiz ◽  
Rodrigo Gonzalo Torres

Introducción. Las nanopartículas poliméricas constituyen una herramienta nanotecnológica que podría ayudar a combatir los microorganismos patógenos que han desarrollado resistencia a los antibióticos convencionales.Objetivo. Sintetizar nanopartículas de ácido poliláctico cargadas con ofloxacina y vancomicina, y determinar su actividad antibacteriana frente a Escherichia coli O157:H7 y Staphylococcus aureus resistente a la meticilina (SARM).Materiales y métodos. Las nanopartículas de ácido poliláctico cargadas con ofloxacina y vancomicina se sintetizaron utilizando el método de emulsión y evaporación de solvente. Se caracterizaron mediante dispersión de luz en modo dinámico, electroforesis Doppler con láser y microscopía electrónica de barrido (S-TEM). Se evaluó la actividad antibacteriana in vitro de las nanopartículas de ácido poliláctico con ofloxacina contra E. coli O157:H7 y nanopartículas de ácido poliláctico con vancomicina contra SARM, mediante el método de microdilución en caldo.Resultados. Se obtuvieron nanopartículas poliméricas con tamaños inferiores a 379 nm y carga superficial positiva de hasta 21 mV. Las nanopartículas cargadas con ofloxacina presentaron una concentración inhibitoria mínima (CIM50) de 0,001 μg/ml frente a E. coli O157:H7, valor 40 veces menor que la concentración de antibiótico libre necesaria para lograr el mismo efecto (CIM50=0,04 μg/ml). Para SARM, las nanopartículas mejoraron la potencia farmacológica in vitro de la vancomicina alexhibir una MIC50 de 0,005 μg/ml, comparada con la de 0,5 μg/ml del antibiótico libre.Conclusiones. Se mejoró el efecto antibacteriano de la ofloxacina y la vancomicina incorporadas en la matriz polimérica de ácido poliláctico. Las nanopartículas poliméricas constituirían una alternativa para el control de cepas bacterianas de interés en salud pública.


2014 ◽  
Vol 77 (2) ◽  
pp. 262-268 ◽  
Author(s):  
KRISTEN L. HIGGINBOTHAM ◽  
KELLIE P. BURRIS ◽  
SVETLANA ZIVANOVIC ◽  
P. MICHAEL DAVIDSON ◽  
C. NEAL STEWART

Hibiscus sabdariffa L. calyces are widely used in the preparation of beverages. The calyces contain compounds that exhibit antimicrobial activity, yet little research has been conducted on their possible use in food systems as antimicrobials. Aqueous extracts prepared from the brand “Mi Costenita” were sterilized by membrane filtration (0.22-μm pore size) or autoclaving (121°C, 30 min) and tested for antimicrobial activity against the foodborne pathogens Escherichia coli O157:H7 strains ATCC 43894 and Cider and Staphylococcus aureus strains SA113 and ATCC 27708 in a microbiological medium and ultrahigh-temperature-processed milk with various fat percentages. Extracts heated by autoclaving exhibited greater activity than did filtered extracts in a microbiological medium. Against E. coli, results of 20 mg/ml filtered extract were not different from those of the control, whereas autoclaved extracts reduced viable cells ca. 3 to 4 log CFU/ml. At 60 mg/ml, both extracts inactivated cells after 24 h. There were reduced populations of both strains of S. aureus (ca. 2.7 and 3 log CFU/ml, respectively) after 24 h of incubation in 40 mg/ml filtered extracts. When grown in autoclaved extracts at 40 mg/ml, both strains of S. aureus were inactivated after 9 h. Autoclaved extracts had decreased anthocyanin content (2.63 mg/liter) compared with filtered extracts (14.27 mg/liter), whereas the phenolic content (48.7 and 53.8 mg/g) remained similar for both treatments. Autoclaved extracts were then tested for activity in milk at various fat concentrations (skim [<0.5%], 1%, 2%, and whole [>3.25%]) against a 1:1 mixture of the two strains of E. coli O157:H7 and a 1:1 mixture of the two strains of S. aureus. Extracts at 40 mg/ml inactivated S. aureus after 168 h in skim and whole milk, and E. coli was inactivated after 96 h in 60 mg/ml extract in all fat levels. These findings show the potential use of Hibiscus extracts to prevent the growth of pathogens in foods and beverages.


2011 ◽  
Vol 17 (6) ◽  
pp. 505-515 ◽  
Author(s):  
D. Djenane ◽  
J. Yangüela ◽  
T. Amrouche ◽  
S. Boubrit ◽  
N. Boussad ◽  
...  

Essential oils (EOs) extracted by hydrodistillation from leaf parts of Algerian Eucalyptus globulus, Myrtus communis and Satureja hortensis were analyzed by gas chromatography/mass spectrometry (GC/MS). The main components of EOs obtained were γ-terpinene (94.48%), 1,8-cineole (46.98%) and carvacrol (46.10%), respectively, for E. globulus, M. communis and S. hortensis. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus CECT 4459 and Escherichia coli O157:H7 CECT 4267 using the agar diffusion technique. Results revealed that E. globulus and S. hortensis EOs had more antibacterial effects than that from M. communis. Minimal inhibitory concentrations (MIC) showed a range of 0.05–0.22% (volume by volume [v/v]). Sensitivity of gram-positive S. aureus was much higher than that of gram-negative E. coli. Plant EOs were added to minced beef (two-fold MIC value) at 0.10–0.44%, experimentally inoculated with the same pathogens at a level of 5 × 105 colony forming units (cfu)/g and stored at 5 ± 2 °C. Results showed that the EOs of E. globulus and S. hortensis had remarkable antibacterial properties, higher than that of M. communis, against S. aureus and E. coli. Indeed, a reduction of 5.8 log cfu/g (70.74% of reduction) was recorded after 7 days of storage for S. hortensis against E. coli. However, regarding S. aureus, both S. hortensis and E. globulus caused a highly significant ( p < 0.05) decrease of microbial counts, most evident after 5 days of storage; S. aureus numbers were 3.50 and 2.50 cfu/g, respectively, corresponding to a reduction of 2.20 and 3.20 log cfu/g (38.60 and 56.14% of reduction) after 1 week of storage. Sensory evaluation revealed that the aroma of minced beef meat treated with EOs was acceptable by panelists at the levels used.


2015 ◽  
Vol 1 (2) ◽  
Author(s):  
L.R. Rodarte-Medina ◽  
A.D. Hernández-Fuentes ◽  
J. Castro-Rosas ◽  
C.A. Gómez-Aldapa

Se investigó el comportamiento de Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus y Salmonella Typhimurium, en salsa con y sin Xoconostle (Opuntia oligacantha F. C. Först). Los frutos se recolectaron directamente de un huerto de Xoconostle y se trasportaron al laboratorio a temperatura ambiente. En el laboratorio se prepararon 3 tipos de salsa con tres formulaciones teniendo como base principal: chile-Xoconostle (A), Chile-Xoconostle-Jitomate (B) y Chile-Jitomate (C). Por separado, las bacterias patógenas fueron inoculadas en las salsas y éstas se almacenaron a 3-5° y 30° C. El recuento de los microorganismos patógenos se realizó mediante la técnica de vertido en placa. Además, se evaluó el efecto antimicrobiano de las salsas de Xoconostle, del fruto de Xoconostle y del chile mediante la técnica de difusión en agar. Tanto E. coli O157:H7 como S. aureus se multiplicaron en la salsa. L. monocytogenes y S. Typhimurium no mostraron desarrollo. En todos los casos la salsa tipo A presento mayor efecto inhibitorio en el desarrollo de E. coli y S. aureus, o en la sobrevivencia de L. monocytogenes y S. Typhimurium. Mediante la técnica de difusión en placa se observó que tanto el Xoconostle como las salsas a base de Xoconostle mostraron efecto antimicrobiano. El chile no mostró efecto antimicrobiano.


2006 ◽  
Vol 69 (2) ◽  
pp. 323-329 ◽  
Author(s):  
NOZOMI KONDO ◽  
MASATSUNE MURATA ◽  
KENJI ISSHIKI

The effect of the disinfectant sodium hypochlorite (NaClO), with or without mild heat (50°C) and fumaric acid, on native bacteria and the foodborne pathogens Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella Typhimurium DT104 attached to iceberg lettuce leaves was examined. The retail lettuce examined consistently harbored 6 to 7 log CFU/g of native bacteria throughout the study period. Inner leaves supported 1 to 2 log CFU/g fewer bacteria than outer leaves. About 70% of the native bacterial flora was removed by washing five times with 0.85% NaCl. S. aureus, E. coli, and Salmonella allowed to attach to lettuce leaves for 5 min were more easily removed by washing than when allowed to attach for 1 h or 2 days, with more S. aureus being removed than E. coli or Salmonella Typhimurium. An increase of time for attachment of pathogens from 5 min to 2 days leads to decreased efficiency of the washing and sanitizing treatment. Treatment with fumaric acid (50 mM for 10 min at room temperature) was the most effective, although it caused browning of the lettuce, with up to a 2-log reduction observed. The combination of 200 ppm of sodium hypochlorite and mild heat treatment at 50°C for 1 min reduced the pathogen populations by 94 to 98% (1.2- to 1.7-log reduction) without increasing browning.


Sign in / Sign up

Export Citation Format

Share Document