Combinational inhibitory action of essential oils and gamma irradiation for controlling Aspergillus flavus and Aspergillus parasiticus growth and their aflatoxins biosynthesis in vitro and in situ conditions

2021 ◽  
pp. 108201322110530
Author(s):  
Hanan H Abdel-Khalek ◽  
Ali AI Hammad ◽  
Reham MMA El-Kader ◽  
Khayria A Youssef ◽  
Dalia AM Abdou

The purpose of this study was to investigate the effects of certain essential oils (star anise, lemon leaves, marjoram, fennel, and lavender) on the fungal growth of Aspergillus flavus and Aspergillus parasiticus and their production of aflatoxin B1 (AFB1). The degree of suppression of the aflatoxigenic strains’ growth and their production of AFB1 is mainly affected by the kind and the concentration of the tested essential oils (EOs). Star anise essential oil had the lowest minimum inhibitory concentration (0.5 and 1.0 μL/mL) against A. flavus and A. parasiticus, respectively, so it was the best among the five different oils. The study of liquid chromatography with tandem mass spectrometry revealed that star anise EO resulted in a 98% reduction in AFB1 without a breakdown of AFB1 products after treatment thus the complete removal of AFB1 was done without any toxic residues. The combination showed a synergistic effect, the combinational treatment between γ-irradiation at a low dose (2 kGy) and star anise EO at concentrate 0.5 μL/g destroyed A. flavus and A. parasiticus inoculated (individually) in sorghum and peanut, respectively throughout the storage period (8 weeks).

2016 ◽  
Vol 9 (4) ◽  
pp. 525-534 ◽  
Author(s):  
C. Soares ◽  
H. Morales ◽  
J. Faria ◽  
A.C. Figueiredo ◽  
L.G. Pedro ◽  
...  

The aim of this work was to assess the inhibitory effect of essential oils on the growth and aflatoxin production of Aspergillus parasiticus, as well as to correlate it with the chemical composition of the essential oils. Essential oils from six aromatic species (Cymbopogon citratus, Eucalyptus globulus, Origanum vulgare, Ruta graveolens, Salvia officinalis, Satureja montana) were characterised by gas chromatography and tested for their inhibitory effect against A. parasiticus strain MUM 92.02. Furthermore, the in vitro inhibitory effects of these essential oils on the production of aflatoxins were evaluated by HPLC. Results showed that all essential oils retarded the time for visible growth. Growth rate was affected differently depending on the essential oil. S. montana essential oil prevented growth in all cases. The essential oil of R. graveolens inhibited most of the aflatoxin production even though growth inhibition was low, while with C. citratus essential oil trace levels of aflatoxins were detected. Essential oils containing carvacrol and/or thymol (S. montana and O. vulgare) have the highest activity against fungal growth, while an essential oil (R. graveolens) containing 2-undecanone and 8-phenyl-2-octanone inhibited the synthesis of aflatoxins. Although the main component of this essential oil was 2-undecanone (91%), when pure 2-undecanone was tested, it did not inhibit aflatoxin production. Inhibition activity is probably due to the recently identified minor compound or to a synergistic effect. Essential oils seem to be a good alternative to fungicides not only because of environmental issues but also because they do not seem to enhance mycotoxin production as it has been reported for some fungicides.


2018 ◽  
Vol 30 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Ramadan A. Hassanein ◽  
Ehab A. Salem ◽  
Ahmed A. Zahran

AbstractThis study was performed to explore the efficacy of combining more than one postharvest treatment in maintaining some quality attributes and reducing fungal pathogenicity in cold-stored guava fruits. The investigated postharvest treatments included the control, CaCl2(4%), lemongrass oil (2 dm3kg−1), gamma (γ) irradiation (0.2, 0.4 and 0.6 kGy), 0.4 kGy γ irradiation + CaCl2(4%), and 0.4 kGy γ irradiation + lemongrass oil (2 dm3kg−1). The studied physiochemical attributes included weight loss, decay percentage, fruit firmness, total soluble solids (TSS), titratable acidity (TA), and vitamin C content. Different fungal species were also isolated from decayed fruits and were identified asAlternaria alternata,Alternaria solani,Aspergillus niger,Botrytis cinerea,Fusarium solaniandRhizopus stolonifer. The severity of infection for the different fungi was determined, and anin vitroantifungal assay was conducted for lemongrass oil. All the investigated treatments generally reduced decay and water loss percentages, and controlled TSS, TA and vitamin C decrements that occurred during cold storage. On the other hand, higher irradiation doses generally increased fruit softness, and the 0.4 kGy γ dose did not contribute to the overall fruit quality when coupled with CaCl2and lemongrass oil, compared to CaCl2and lemongrass oil treatments alone.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 646 ◽  
Author(s):  
García-Díaz ◽  
Patiño ◽  
Vázquez ◽  
Gil-Serna

Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.


2015 ◽  
Vol 81 (18) ◽  
pp. 6129-6144 ◽  
Author(s):  
Abdulsamie Hanano ◽  
Ibrahem Almousally ◽  
Mouhnad Shaban ◽  
Elizabeth Blee

ABSTRACTCaleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein inAspergillus flavusthat is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway,aflRandaflD, were downregulated in the strains in whichA. flavusPXG(AfPXG) was silenced, leading to reduced aflatoxin B1 productionin vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in whichAfPXGwas silenced.PXG-deficientA. flavusstrains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease.


2013 ◽  
Vol 2 (4) ◽  
pp. 68 ◽  
Author(s):  
Saifeldin Ahmed El-nagerabi ◽  
Abdulkadir E. Elshafie ◽  
Mohamed R. Elamin

<p>Aflatoxin and especially aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) is a carcinogenic secondary metabolite synthesized by certain <em>Aspergillus </em>species. They contaminate natural and processed agricultural and animal products which render them unfit for consumption. The aim of this study was to evaluate the <em>in vitro</em> effects of <em>Balanites aegyptiaca</em> and <em>Tamarindus indica</em> fruit extracts on the growth and aflatoxin secretion of <em>Aspergillus flavus</em> (SQU21) and <em>A. parasiticus </em>(CBS921.7) strains. The two fruit extracts significantly (<em>P </em>&lt; 0.05) reduced aflatoxin and did not inhibit mycelial dry weights of the two <em>Aspergillus </em>strains. At different concentrations of balanites (2.5-10%), the inhibition of total aflatoxin was 49.9-84.8% for <em>A. flavus</em> (SQU21) and 32.1-84.4% for <em>A. parasiticus</em> (CBS921.7), whereas the inhibition of aflatoxin Bwas 38.2-81.4% and 32.8-80.6% for the two strains. Tamarind fruit extract (2.5-7.5%) caused 28.8-84.2% and 40.7-85.5% reductions in total aflatoxin and 37.1-83.5% and 33.9-85.9% in aflatoxin B for the two strains, respectively. None of these extracts inhibited the fungal growth or detoxified synthetic aflatoxin B<sub>1</sub>. We have concluded that these fruits contain various inhibitors to aflatoxin biosynthesis and secretion. Therefore, they can be used in combination as safe green biopreservatives to combat aflatoxin contamination of food.</p>


2013 ◽  
Vol 6 (1) ◽  
pp. 43-50 ◽  
Author(s):  
V. Aiko ◽  
A. Mehta

Cinnamon, cardamom, star anise and clove were studied for their effect on growth of Aspergillus flavus and aflatoxin B1 (AFB1) synthesis. The experiments were carried out in yeast extract sucrose culture broth as well as in rice supplemented with spices. AFB1 produced was analysed qualitatively and quantitatively using thin layer chromatography and high performance liquid chromatography, respectively. At a concentration of 10 mg/ml, cardamom and star anise did not exhibit any antifungal or anti-aflatoxigenic activity in culture broth, whereas cinnamon and clove inhibited A. flavus growth completely. The minimum inhibitory concentrations of cinnamon and clove were 4 and 2 mg/ml, respectively. Concentrations of cinnamon and clove below their minimum inhibitory concentrations showed enhanced fungal growth, while AFB1 synthesis was reduced. Clove inhibited the synthesis of AFB1 significantly up to 99% at concentrations ≥1.0 mg/ml. The spices also inhibited AFB1 synthesis in rice at 5 mg/g, although fungal growth was not inhibited. Clove and cinnamon inhibited AFB1 synthesis significantly up to 99 and 92%, respectively, and star anise and cardamom by 41 and 23%, respectively. The results of this study suggest the use of whole spices rather than their essential oils for controlling fungal and mycotoxin contamination in food grains.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1017 ◽  
Author(s):  
Francesca Froiio ◽  
Lorianne Ginot ◽  
Donatella Paolino ◽  
Noureddine Lebaz ◽  
Abderrazzak Bentaher ◽  
...  

In the last few years, essential oils (EOs) derived from plants have aroused great interest due to their well-known antimicrobial activity. Unfortunately, they present several limitations in their use, such as photosensitivity, temperature sensitivity, high volatility, and poor water solubility. The encapsulation technique represents a good solution to these problems and ensures protection of the functional properties of essential oils. In this work, bergamot essential oil (BEO) and sweet orange essential oil (OEO) loaded-Eudragit® RS 100 (EuRS100) nanoparticles (NPs) were prepared by using the nanoprecipitation technique. We obtained nanoparticles characterized by a mean diameter of 57 to 208 nm and a positive surface charge (39 to 74 mV). The antibacterial activity of the obtained systems against Escherichia coli was in vitro investigated. We demonstrated that both orange and bergamot essential oils were successfully encapsulated and our nanoparticles have good antibacterial activity. Finally, in order to evaluate the potential applicability of OEONps to prolong fresh orange juice shelf-life, survival of E. coli during a storage period of one week at 25 °C was investigated: Orange essential oil-loaded nanoparticles (OEONPs) have been able to prolong the orange juice shelf life.


2011 ◽  
Vol 35 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Rosane Tamara da Silva Medeiros ◽  
Edlayne Gonçalez ◽  
Roberto Carlos Felicio ◽  
Joana D'arc Felicio

The presence of mycotoxins as a result of fungal attack can occur before, after and during the harvest and storage operations on agricultural crops and food commodities. Considering the inhibitory property of essential plant oils on the mycelial development of fungi and the importance of Aspergillus flavus, the main producer of aflatoxins, this research was designed to evaluate the toxicity of essential oil from Pittosporum undulatum against A. flavus. The essential oils were obtained from P. undulatum leaves, collected in different months and analyzed by GC/MS. The oils were rich in hydrocarbon, monoterpenes and sesquiterpenes and it was observed a significant variation on the chemical composition of the essential oil of leaves at different months. Besides, the essential oils were tested against fungal growth and the results showed different spectrum of inhibition on A. flavus. However, the essential oils inhibited the aflatoxin B1 production.


2019 ◽  
Vol 41 ◽  
pp. 20
Author(s):  
Ana Paula Martinazzo ◽  
Filipe Da Silva de Oliveira ◽  
Carlos Eduardo de Souza Teodoro

The search for alternatives for the control of microbiological contamination in foods has been the object of study in different scientific areas. This study aimed to evaluate the efficiency of lemon grass (Cymbopogon citratus) essential oil in controlling the growth of the fungus Aspergillus flavus in three types of analysis: first, by in vitro tests, in essential oil doses between 0.2 and 1.0 μL/ml; second, by serial microdilution to determine the minimum inhibitory concentration, in doses between 0.1 and 1.2 μL/mL; and third, by inhibition of fungal growth in corn kernels contaminated using essential oil doses of 0.4, 0.7, and 1.0 μL/mL, in the incubation times of 14, 28, and 42 days. The in vitro tests showed that the essential oil controlled the fungus from doses of 0.6 μL/mL, but the dose of 1.0 μL/mL controlled 100% growth until day eight of incubation, from which it decreased. The minimum inhibitory concentration for the microdilution analysis was 0.9 μL/mL. The evaluation of the corn kernels for all doses of essential oil and times tested showed 100% inhibition of the fungal growth.


2020 ◽  
Author(s):  
nasrollah najibi ilkhechi ◽  
Mahdi Mozammel ◽  
Ahmad Yari Khoroushahi

Abstract This study aimed to synthesis ZnO, TiO2 and ZnO–TiO2 (ratio weight of 1/1 for Zn/Ti) nanoparticles using zinc acetate and titanium isopropoxide through the sol-gel method. Physicochemical and morphological characterization and antifungal properties evaluation like minimum inhibition concentration (MIC) and minimum fungicide concentration (MFC) of nanopowders were investigated against Aspergillus flavus at in vitro. All synthesized nanoparticles (50 µg/ml) showed fungal growth inhibition while ZnO-TiO2 showed higher antifungal activity against A. flavus than pure TiO2 and ZnO. TiO2 and ZnO-TiO2 (300 µg/ml) inhibited 100% of spur production. Pure ZnO and TiO2 showed pyramidal and spherical shapes, respectively whereas ZnO-TiO2 nanopowders illustrated both spherical and pyramidal shapes with grown particles on the surface. Based on our findings, low concentration (150 µg/ml) of ZnO-TiO2 showed higher ROS production and stress oxidative induction thus fungicide effect as compared to alone TiO2 and ZnO. In conclusion, ZnO-TiO2 nanostructure can be utilized as an effective antifungal compound but more studies need to be performed to understand the antifungal mechanism of the nanoparticles rather than ROS inducing apoptosis.


Sign in / Sign up

Export Citation Format

Share Document