Colloid Chitin Azure Is a Dispersible, Low-Cost Substrate for Chitinase Measurements in a Sensitive, Fast, Reproducible Assay

2009 ◽  
Vol 15 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Chia-Rui Shen ◽  
Yu-Sheng Chen ◽  
Ching-Jen Yang ◽  
Jeen-Kuan Chen ◽  
Chao-Lin Liu

Chitin and its derivatives are widely used as biomedical materials because of their versatility and biocompatibility. Chitinases are enzymes that produce chito-oligosaccharides from chitin. The assay of chitinase activity is difficult because few appropriate substrates are available. In this study, the authors developed an efficient and low-cost chitinase assay using colloidal chitin azure. The assay feasibility is evaluated and compared with traditional assays employing colloidal chitin and chitin azure. The authors found that the optimum pH for determining chitinase activity using colloid chitin azure was pH 5 or 8. The method was sensitive, and the assay was complete within 30 min. When the assay was used to measure chitinase activities produced by 2 strains of chitinolytic bacteria, BCTS (an Escherichia coli BL21 [DE3] expressing a secretory recombinant chitinase) and AS1 (a chitinolytic bacterium with low levels of chitinase), it was shown that cultivation in Bushnell-Haas selection medium caused AS1 to secrete a higher level of chitinase than was secreted when the bacterium grew in other media. In summary, colloid chitin azure is a sensitive, feasible, reproducible, and low-cost substrate for the assay of chitinase activity.

Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


2021 ◽  
Vol 13 (4) ◽  
pp. 2077
Author(s):  
Mahnaz Sarlak ◽  
Laura Valeria Ferretti ◽  
Rita Biasi

About two billion rural individuals depend on agricultural systems associated with a high amount of risk and low levels of yield in the drylands of Asia, Africa, and Latin America. Human activities, climate change and natural extreme events are the most important drivers of desertification. This phenomenon has occurred in many regions of Iran, particularly in the villages in the periphery of the central desert of Iran, and has made living in the oases so difficult that the number of abandoned villages is increasing every year. Land abandonment and land-use change increase the risk of desertification. This study aims to respond to the research questions: (i) does the planning of green infrastructures on the desert margin affect the distribution and balance of the population? (ii) how should the green belt be designed to have the greatest impact on counteracting desertification?, and (iii) does the design of productive landscape provide the solution? Through a wide-ranging and comprehensive approach, this study develops different scenarios for designing a new form of green belt in order to sustainably manage the issues of environmental protection, agricultural tradition preservation and desertification counteraction. This study proposes a new-traditional greenbelt including small low-cost and low-tech projects adapted to rural scale.


2004 ◽  
Vol 70 (11) ◽  
pp. 6420-6427 ◽  
Author(s):  
Steven C. Ingham ◽  
Jill A. Losinski ◽  
Matthew P. Andrews ◽  
Jane E. Breuer ◽  
Jeffry R. Breuer ◽  
...  

ABSTRACT In this study we tested the validity of the National Organic Program (NOP) requirement for a ≥120-day interval between application of noncomposted manure and harvesting of vegetables grown in manure-fertilized soil. Noncomposted bovine manure was applied to 9.3-m2 plots at three Wisconsin sites (loamy sand, silt loam, and silty clay loam) prior to spring and summer planting of carrots, radishes, and lettuce. Soil and washed (30 s under running tap water) vegetables were analyzed for indigenous Escherichia coli. Within 90 days, the level of E. coli in manure-fertilized soil generally decreased by about 3 log CFU/g from initial levels of 4.2 to 4.4 log CFU/g. Low levels of E. coli generally persisted in manure-fertilized soil for more than 100 days and were detected in enriched soil from all three sites 132 to 168 days after manure application. For carrots and lettuce, at least one enrichment-negative sample was obtained ≤100 days after manure application for 63 and 88% of the treatments, respectively. The current ≥120-day limit provided an even greater likelihood of not detecting E. coli on carrots (≥1 enrichment-negative result for 100% of the treatments). The rapid maturation of radishes prevented conclusive evaluation of a 100- or 120-day application-to-harvest interval. The absolute absence of E. coli from vegetables harvested from manure-fertilized Wisconsin soils may not be ensured solely by adherence to the NOP ≥120-day limit. Unless pathogens are far better at colonizing vegetables than indigenous E. coli strains are, it appears that the risk of contamination for vegetables grown in Wisconsin soils would be elevated only slightly by reducing the NOP requirement to ≥100 days.


2009 ◽  
Vol 75 (23) ◽  
pp. 7417-7425 ◽  
Author(s):  
H. N. Chinivasagam ◽  
T. Tran ◽  
L. Maddock ◽  
A. Gale ◽  
P. J. Blackall

ABSTRACT This study assessed the levels of two key pathogens, Salmonella and Campylobacter, along with the indicator organism Escherichia coli in aerosols within and outside poultry sheds. The study ranged over a 3-year period on four poultry farms and consisted of six trials across the boiler production cycle of around 55 days. Weekly testing of litter and aerosols was carried out through the cycle. A key point that emerged is that the levels of airborne bacteria are linked to the levels of these bacteria in litter. This hypothesis was demonstrated by E. coli. The typical levels of E. coli in litter were ∼108 CFU g−1 and, as a consequence, were in the range of 102 to 104 CFU m−3 in aerosols, both inside and outside the shed. The external levels were always lower than the internal levels. Salmonella was only present intermittently in litter and at lower levels (103 to 105 most probable number [MPN] g−1) and consequently present only intermittently and at low levels in air inside (range of 0.65 to 4.4 MPN m−3) and once outside (2.3 MPN m−3). The Salmonella serovars isolated in litter were generally also isolated from aerosols and dust, with the Salmonella serovars Chester and Sofia being the dominant serovars across these interfaces. Campylobacter was detected late in the production cycle, in litter at levels of around 107 MPN g−1. Campylobacter was detected only once inside the shed and then at low levels of 2.2 MPN m−3. Thus, the public health risk from these organisms in poultry environments via the aerosol pathway is minimal.


1982 ◽  
Vol 152 (1) ◽  
pp. 534-537
Author(s):  
S Mitra ◽  
B C Pal ◽  
R S Foote

O(6)-Methylguanine-DNA methyltransferase is induced in Escherichia coli during growth in low levels of N-methyl-N'-nitro-N-nitrosoguanidine. We have developed a sensitive assay for quantitating low levels of this activity with a synthetic DNA substrate containing 3H-labeled O(6)-methylguanine as the only modified base. Although both wild-type and adaptation-deficient (ada) mutants of E. coli contained low but comparable numbers (from 13 to 60) of the enzyme molecules per cell, adaptation treatment caused a significant increase of the enzyme in the wild type but not in the ada mutants, suggesting that the ada mutation is in a regulatory locus and not in the structural gene for the methyltransferase.


2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


1987 ◽  
Vol 19 (5-6) ◽  
pp. 839-845 ◽  
Author(s):  
J. T. Pereira-Neto ◽  
E. I. Stentiford ◽  
D. D. Mara

The forced aeration static pile composting system was used to compost mixtures of domestic refuse and sewage sludge. Several different control methods have been evaluated over the past four years from simple, low cost fixed rate aeration timers to microcomputer based systems. Their relative merits are considered. In a compost pile using temperature feedback control the number of Escherichia coli were reduced from 107 org./g to less than 102 org./g. within 16 days. Faecal streptococci were reduced from 107 to less than 102 org./g within 30 days. The process consistently produced a good quality sanitised material under a range of control regimes.


Sign in / Sign up

Export Citation Format

Share Document