scholarly journals Identification of Novel Polyphenolic Inhibitors of Shikimate Dehydrogenase (AroE)

2014 ◽  
Vol 19 (7) ◽  
pp. 1090-1098 ◽  
Author(s):  
James Peek ◽  
Thomas Shi ◽  
Dinesh Christendat

Shikimate dehydrogenase (AroE) is an attractive target for herbicides and antimicrobial agents due to its conserved and essential nature in plants, fungi, and bacteria. Here, we have performed an in vitro screen using a collection of more than 5500 compounds and identified 24 novel inhibitors of AroE from Pseudomonas putida. The IC50 values for the two most potent inhibitors we identified, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG), were 3.0 ± 0.2 µM and 3.7 ± 0.5 µM, respectively. Based on the high level of structural conservation between AroE orthologs, we predicted that the identified compounds would also inhibit AroE enzymes from other organisms. Consistent with this hypothesis, we found that EGCG and ECG inhibit the AroE domain of the bifunctional dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) from Arabidopsis thaliana with IC50 values of 2.1 ± 0.3 µM and 2.0 ± 0.2 µM, respectively.

2021 ◽  
Vol 12 (3) ◽  
pp. 1793-1797
Author(s):  
Priyanka Sirari ◽  
Jigisha Anand ◽  
Devvret ◽  
Ashish Thapliyal ◽  
Nishant Rai

Green tea is credited as one of the world’s healthiest drinks with enriched antioxidants. It is known for its multi-beneficial health benefits against diabetes, blood pressure, hypertension, gastro-intestinal upset and is bestowed with significant antimicrobial potential. There are previous scientific evidence highlighting the antifungal potential of green tea and has identified it as a potential inhibitor of non-albicans Candida species. Lansterol 14-α demethylase (Erg 11) or CYP51 protein belongs to the cytochrome P450 monooxygenase (CYP) superfamily. Erg 11 is involved in ergosterol biosynthesis and has a significant role in azole drug resistance in Candida glabrata. The present study attempted to identify the inhibitory potential of green tea phytocompounds against inhibition of Erg 11 in Candida glabrata using bioinformatics tool viz., autodock vina software. Out of 15 green tea phytocompounds investigated, the study identified, Rutin (-10.5 kcal) Kaempferitrin (-9.4kcal), Epigallocatechin gallate (-10kcal), Epicatechin gallate (-8.7kcal), and Coumaroylquinic acid (-8.6kcal) acid as the potent phytocompounds which showed significant molecular interaction with Erg 11 in Candida glabrata. In attribution to the constant emergence of azole-resistant isolates, this preliminary analysis therefore, indicated the potential of green tea phytocompounds against inhibition of non-albicans Candida specific candidiasis. However, further, in vitro antimicrobial efficacy of these phytocompounds, the dose regime, drug likeliness, and cytotoxic analysis are required to be investigated and validated.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 102 ◽  
Author(s):  
Emanuela Monteiro Coelho ◽  
Marcelo Eduardo Alves Olinda de Souza ◽  
Luiz Claudio Corrêa ◽  
Arão Cardoso Viana ◽  
Luciana Cavalcanti de Azevêdo ◽  
...  

The present work had the objective of producing liqueurs from mango peels (varieties “Haden” and “Tommy Atkins”) by processes of alcoholic maceration and maceration with pectinase, as well as to evaluate bioactive compounds by reversed-phase high-performance liquid chromatography coupled to diode array detection and fluorescence-detection (RP-HPLC/DAD/FD) and in vitro antioxidant activity (AOX), for by-product potential reuse. Alcoholic maceration in wine ethanol (65% v/v) produced liqueurs with higher phytochemical and AOX content. Maceration with pectinase resulted in liqueurs with higher quercetin-3-O-glucopyranoside content. In relation to mango varieties, Haden liqueurs presented higher bioactive content than Tommy Atkins liqueurs. The liqueurs presented high antioxidant activity. The main bioactive compounds found were flavanols (epicatechin-gallate, epigallocatechin-gallate), flavonols (quercetin-3-O-glucopyranoside and rutin), and phenolic acids (gallic acid, o-coumaric acid, and syringic acid). The present study showed that the production of liqueur enabled the recovering of an important part of the bioactive content of mango peels, suggesting an alternative for the recovery of antioxidant substances from this by-product.


1992 ◽  
Vol 282 (3) ◽  
pp. 883-889 ◽  
Author(s):  
C A Austin ◽  
S Patel ◽  
K Ono ◽  
H Nakane ◽  
L M Fisher

Four naturally occurring flavones (baicalein, quercetin, quercetagetin and myricetin) and two novel catechins [(-)-epicatechin gallate and (-)-epigallocatechin gallate, from the tea plant Camellia sinensis], which are known inhibitors of reverse transcriptase, were shown to induce mammalian topoisomerase II-dependent DNA-cleavage in vitro. The flavones differed from the catechins in causing unwinding of duplex DNA, but both classes of compound induced enzymic DNA breakage at the same sites on DNA. Moreover, the cleavage specificity was the same as that for the known intercalator 4′-(acridin-9-ylamino)methanesulphon-m-anisidide, suggesting that these agents trap the same cleavable complex. Analysis of some 30 flavonoid compounds allowed elucidation of the structure-function relationships for topoisomerase II-mediated DNA cleavage. For flavonoid inhibitors an unsaturated double bond between positions 2 and 3 of the pyrone ring and hydroxy groups at the 5, 7, 3′ and 4′ positions favoured efficient cleavage. Hydroxy substitutions could be tolerated at the 3, 6 and 5′ positions. Indeed, the absence of substituents at the 3′, 4′ and 5′ positions could be compensated by a hydroxy group at position 6 (baicalein). Similar requirements have been reported for flavonoid inhibitors of protein kinase C that act competitively with ATP, suggesting interaction with a conserved protein feature. Formation of the cleavable complex is a cytotoxic lesion that may contribute to the growth-inhibitory properties of flavones observed for three human tumour cell lines. These results are discussed in regard to the selectivity of antiviral agents.


1995 ◽  
Vol 6 (3) ◽  
pp. 157-160 ◽  
Author(s):  
Andrew E Simor ◽  
Anita Rachlis ◽  
Lisa Louie ◽  
Janet Goodfellow ◽  
Marie Louie

Objective: To determine the prevalence of resistance ofStreptococcus pneumoniaeto penicillin and other antimicrobial agents in metropolitan Toronto.Design: Consecutive pneumococcal isolates from different patients were obtained from two private community-based laboratories and from patients assessed in the emergency department of a tertiary-care teaching hospital in Toronto, Ontario between June and December 1993, and between March and October 1994. In vitro susceptibility testing was done by broth microdilution in accordance with National Committee for Clinical Laboratory Standards guidelines.Results: Twenty (7.3±3.1%) of 274 pneumococcal isolates were resistant to penicillin; six (30%) isolates had high-level resistance (minimal inhibitory concentration [mic] 2.0 μg/mL or greater); and 14 isolates had intermediate resistance (mic0.1 to 1.0 μg/mL). Penicillin-resistant strains were also frequently resistant to tetracycline (55%), cotrimoxazole (50%), erythromycin (40%) and cefuroxime (35%). Resistant strains comprised several serotypes: 19F (six isolates), 9V (three), 23F (three), and one each of 6A, 6B, 14, and 19A; four isolates were nontypeable.Conclusions: There has been a recent emergence of penicillin-resistantS pneumoniaein southern Ontario. National and regional surveillance is warranted to determine the extent of the problem elsewhere in Canada.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Yuka Watanabe ◽  
Nobutomo Ikarashi ◽  
Toshiyuki Satoh ◽  
Kiyomi Ito ◽  
Wataru Ochiai ◽  
...  

We have studied the effects of various Kampo medicines on P-glycoprotein (P-gp), a drug transporter,in vitro. The present study focused on Daiokanzoto (Da-Huang-Gan-Cao-Tang), which shows the most potent inhibitory effects on P-gp among the 50 Kampo medicines studied, and investigated the P-gp inhibitory effects of Daiokanzoto herbal ingredients (rhubarb and licorice root) and their components by an ATPase assay using human P-gp membrane. Both rhubarb and licorice root significantly inhibited ATPase activity, and the effects of rhubarb were more potent than those of licorice root. The content of rhubarb in Daiokanzoto is double that in licorice root, and the inhibition patterns of Daiokanzoto and rhubarb involve both competitive and noncompetitive inhibition, suggesting that the inhibitory effects of Daiokanzoto are mainly due to rhubarb. Concerning the components of rhubarb, concentration-dependent inhibitory effects were observed for (−)-catechin gallate, (−)-epicatechin gallate, and (−)-epigallocatechin gallate. In conclusion, rhubarb may cause changes in the drug dispositions of P-gp substrates through the inhibition of P-gp. It appears that attention should be given to the interactions between these drugs and Kampo medicines containing rhubarb as an herbal ingredient.


Author(s):  
Kaitlin F. Mitchell ◽  
Erin McElvania ◽  
Meghan A. Wallace ◽  
Lauren E. Droske ◽  
Amy E. Robertson ◽  
...  

Background: Members of the genus Corynebacterium are increasingly recognized as pathobionts and can be very resistant to antimicrobial agents. Previous studies have demonstrated that Corynebacterium striatum can rapidly develop high-level daptomycin resistance (HLDR) (minimum inhibitory concentration [MIC] ≥256 μg/mL). Here we conducted a multi-center study to assay for this in vitro phenotype in diverse Corynebacterium species. Methods: Corynebacterium clinical isolates (n=157) from four medical centers were evaluated. MIC values to daptomycin, vancomycin, and telavancin were determined before and after overnight exposure to daptomycin to identify isolates able to rapidly develop daptomycin non-susceptibility. To investigate assay reproducibility, 18 isolates were evaluated at three study sites. In addition, stability of daptomycin non-susceptibility was tested using repeated subculture without selective pressure. The impact of different media brands was also investigated. Results: Daptomycin non-susceptibility emerged in 12 of 23 species evaluated in this study (C. afermentans, amycolatum, aurimucosum, bovis, jeikeium, macginleyi, pseudodiphtheriticum, resistens, simulans, striatum, tuberculostearicum, and ulcerans) and was detected in 50 of 157 (31.8%) isolates tested. All isolates displayed low (susceptible) MIC values to vancomycin and telavancin before and after daptomycin exposure. Repeated subculture demonstrated 2 of 9 isolates (22.2%) exhibiting HLDR reverted to a susceptible phenotype. Of 30 isolates tested on three media brands, 13 (43.3%) had differences in daptomycin MIC values between brands. Conclusions: Multiple Corynebacterium species can rapidly develop daptomycin non-susceptibility, including HLDR, after a short daptomycin exposure period.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1550
Author(s):  
Karin Sasagawa ◽  
Hisanori Domon ◽  
Rina Sakagami ◽  
Satoru Hirayama ◽  
Tomoki Maekawa ◽  
...  

Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.


2001 ◽  
Vol 45 (6) ◽  
pp. 1721-1729 ◽  
Author(s):  
Gary V. Doern ◽  
Kristopher P. Heilmann ◽  
Holly K. Huynh ◽  
Paul R. Rhomberg ◽  
Stacy L. Coffman ◽  
...  

ABSTRACT A total of 1,531 recent clinical isolates of Streptococcus pneumoniae were collected from 33 medical centers nationwide during the winter of 1999–2000 and characterized at a central laboratory. Of these isolates, 34.2% were penicillin nonsusceptible (MIC ≥ 0.12 μg/ml) and 21.5% were high-level resistant (MIC ≥ 2 μg/ml). MICs to all beta-lactam antimicrobials increased as penicillin MICs increased. Resistance rates among non-beta-lactam agents were the following: macrolides, 25.2 to 25.7%; clindamycin, 8.9%; tetracycline, 16.3%; chloramphenicol, 8.3%; and trimethoprim-sulfamethoxazole (TMP-SMX), 30.3%. Resistance to non-beta-lactam agents was higher among penicillin-resistant strains than penicillin-susceptible strains; 22.4% of S. pneumoniae were multiresistant. Resistance to vancomycin and quinupristin-dalfopristin was not detected. Resistance to rifampin was 0.1%. Testing of seven fluoroquinolones resulted in the following rank order of in vitro activity: gemifloxacin > sitafloxacin > moxifloxacin > gatifloxacin > levofloxacin = ciprofloxacin > ofloxacin. For 1.4% of strains, ciprofloxacin MICs were ≥4 μg/ml. The MIC90s (MICs at which 90% of isolates were inhibited) of two ketolides were 0.06 μg/ml (ABT773) and 0.12 μg/ml (telithromycin). The MIC90 of linezolid was 2 μg/ml. Overall, antimicrobial resistance was highest among middle ear fluid and sinus isolates of S. pneumoniae; lowest resistance rates were noted with isolates from cerebrospinal fluid and blood. Resistant isolates were most often recovered from children 0 to 5 years of age and from patients in the southeastern United States. This study represents a continuation of two previous national studies, one in 1994–1995 and the other in 1997–1998. Resistance rates with S. pneumoniae have increased markedly in the United States during the past 5 years. Increases in resistance from 1994–1995 to 1999–2000 for selected antimicrobial agents were as follows: penicillin, 10.6%; erythromycin, 16.1%; tetracycline, 9.0%; TMP-SMX, 9.1%; and chloramphenicol, 4.0%, the increase in multiresistance was 13.3%. Despite awareness and prevention efforts, antimicrobial resistance with S. pneumoniae continues to increase in the United States.


2001 ◽  
Vol 45 (12) ◽  
pp. 3517-3523 ◽  
Author(s):  
L. M. Weigel ◽  
G. J. Anderson ◽  
R. R. Facklam ◽  
F. C. Tenover

ABSTRACT Twenty-one clinical isolates of Streptococcus pneumoniae showing reduced susceptibility or resistance to fluoroquinolones were characterized by serotype, antimicrobial susceptibility, and genetic analyses of the quinolone resistance-determining regions (QRDRs) of gyrA,gyrB, parC, and parE. Five strains were resistant to three or more classes of antimicrobial agents. In susceptibility profiles for gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, ofloxacin, sparfloxacin, and trovafloxacin, 14 isolates had intermediate- or high-level resistance to all fluoroquinolones tested except gemifloxacin (no breakpoints assigned). Fluoroquinolone resistance was not associated with serotype or with resistance to other antimicrobial agents. Mutations in the QRDRs of these isolates were more heterogeneous than those previously reported for mutants selected in vitro. Eight isolates had amino acid changes at sites other than ParC/S79 and GyrA/S81; several strains contained mutations in gyrB, parE, or both loci. Contributions to fluoroquinolone resistance by individual amino acid changes, including GyrB/E474K, ParE/E474K, and ParC/A63T, were confirmed by genetic transformation of S. pneumoniae R6. Mutations in gyrB were important for resistance to gatifloxacin but not moxifloxacin, and mutation of gyrAwas associated with resistance to moxifloxacin but not gatifloxacin, suggesting differences in the drug-target interactions of the two 8-methoxyquinolones. The positions of amino acid changes within the four genes affected resistance more than did the total number of QRDR mutations. However, the effect of a specific mutation varied significantly depending on the agent tested. These data suggest that the heterogeneity of mutations will likely increase as pneumococci are exposed to novel fluoroquinolone structures, complicating the prediction of cross-resistance within this class of antimicrobial agents.


2012 ◽  
Vol 109 (12) ◽  
pp. 2199-2207 ◽  
Author(s):  
Shing-Tack Fung ◽  
Cyrus K. Ho ◽  
Siu-Wai Choi ◽  
Wai-Yuen Chung ◽  
Iris F. F. Benzie

Green tea (Camellia sinensis) catechin profiles in plasma and urine following single dosing and regular ingestion of green tea are not clear. We performed a placebo-controlled intervention study with sixteen healthy volunteers to determine changes in total and free catechins after a single dose and following 1 week of twice-daily green tea. Blood and urine samples were collected before (fasting) and after (60 and 120 min for blood; 90 and 180 min for urine) drinking 200 ml of 1·5 % (w/v) green tea or water (n 8 each), and fasting samples were again collected after 7 d of 150 ml of 1 % (w/v) supplemental green tea or water twice daily. After a 4-week washout, subjects were crossed onto the other treatment and procedures repeated. Plasma results at 1 h post-ingestion showed elevated (P< 0·05) mean epigallocatechin gallate (EGCG; 310 (sd 117) nmol/l; all in free form), epigallocatechin (EGC; 192 (sd 67) nmol/l; 30 % free) and epicatechin gallate (ECG; 134 (sd 51) nmol/l; 75 % free). Fasting plasma after 7 d of regular intake showed increased (P< 0·05) EGCG (80 v. 15 nmol/l at baseline) and ECG (120 v. 40 nmol/l), with ≥ 90 % of both in their conjugated forms. Total EGC was < 10 nmol/l. Post-ingestion conjugation and renal loss of EGC and epicatechin were rapid and high, but were negligible for EGCG and ECG. In the green tea consumed, the content was EGCG >EGC >ECG, and the acute plasma response mirrored this. However, after chronic consumption there was almost no EGC found in fasting plasma, some EGCG was present, but a rather high level of ECG was maintained.


Sign in / Sign up

Export Citation Format

Share Document