Absorption, Distribution, Metabolism, and Excretion of 14C-MMB4 DMS Administered Intramuscularly to Sprague-Dawley Rats and New Zealand White Rabbits

2013 ◽  
Vol 32 (4_suppl) ◽  
pp. 88S-98S
Author(s):  
Bozena D. Lusiak ◽  
Dean J. Kobs ◽  
S. Peter Hong ◽  
Brian L. Burback ◽  
Jerry D. Johnson

1,1′-Methylenebis[4-[(hydroxyimino)methyl]-pyridinium] dimethanesulfonate (MMB4 DMS) is currently under development for the treatment of chemical warfare organophosphorus nerve agent poisoning. The present study evaluates the absorption, distribution, metabolism, and excretion of 14C-MMB4 DMS administered intramuscularly to rats and rabbits. The formulated mixture of radiolabeled and nonradiolabeled MMB4 DMS was administered as a single or 7-day repeated dose. Rat doses were 55 or 220 mg/kg (100 µCi/kg), and rabbit doses were 25 or 100 mg/kg (31.25 and 62.5 µCi/kg, respectively). Urine, bile (rats only), feces, blood, and tissues were collected for up to 72 hours. Metabolic profiling using high-performance liquid chromatography with radiodetection was performed on selected urine samples. For both animal species, the majority of the total radioactivity was excreted in the urine (74%-94%) by 72 hours after dosing with greater than 90% of the radioactivity measured in the urine within 8 to 12 hours after dosing. There were no apparent species or dose differences in the urine excretion pattern. The distribution of 14C-MMB4 DMS-derived radioactivity was rapid and generally reached the highest concentration by the first collection time point (0.25 hours). The tissue–blood concentration ratios were highest at the injection sites and in the kidneys and gastrointestinal tract contents for both the species. Two metabolites of MMB4 DMS were detected in rat and rabbit urine; their structure was confirmed by liquid chromatography with tandem mass spectrometry as 4-pyridine aldoxime and isonicotinic acid (pyridine-4-carboxylic acid).

Amino Acids ◽  
2021 ◽  
Author(s):  
Tomohisa Yoshimura ◽  
Yuki Inokuchi ◽  
Chikako Mutou ◽  
Takanobu Sakurai ◽  
Tohru Nagahama ◽  
...  

AbstractTaurine, a sulfur-containing amino acid, occurs at high concentrations in the skin, and plays a role in maintaining the homeostasis of the skin. We investigated the effects of aging on the content and localization of taurine in the skin of mice and rats. Taurine was extracted from the skin samples of hairless mice and Sprague Dawley rats, and the taurine content of the skin was determined by high-performance liquid chromatography (HPLC). The results of the investigation revealed that the taurine content in both the dermis and epidermis of hairless mice declined significantly with age. Similar age-related decline in the skin taurine content was also observed in rats. In contrast, the taurine content in the sole remained unchanged with age. An immunohistochemical analysis also revealed a decreased skin taurine content in aged animals compared with younger animals, although no significant differences in the localization of taurine were observed between the two age groups. Supplementation of the drinking water of aged mice with 3% (w/v) taurine for 4 weeks increased the taurine content of the epidermis, but not the dermis. The present study showed for the first time that the taurine content of the skin decreased with age in mice and rats, which may be related to the impairment of the skin homeostasis observed with aging. The decreased taurine content of the epidermis in aged animals was able to be rescued by taurine supplementation.


2009 ◽  
Vol 29 (2) ◽  
pp. 93-101 ◽  
Author(s):  
Amal A El-Bakary ◽  
Sahar A El-Dakrory ◽  
Sohayla M Attalla ◽  
Nawal A Hasanein ◽  
Hala A Malek

Methanol poisoning is a hazardous intoxication characterized by visual impairment and formic acidemia. The therapy for methanol poisoning is alcohol dehydrogenase (ADH) inhibitors to prevent formate accumulation. Ranitidine has been considered to be an inhibitor of both gastric alcohol and hepatic aldehyde dehydrogenase enzymes. This study aimed at testing ranitidine as an antidote for methanol acute toxicity and comparing it with ethanol and 4-methyl pyrazole (4-MP). This study was conducted on 48 Sprague-Dawley rats, divided into 6 groups, with 8 rats in each group (one negative control group [C1], two positive control groups [C2, C3] and three test groups [1, 2 and 3]). C2, C3 and all test groups were exposed to nitrous oxide by inhalation, then, C3 group was given methanol (3 g/kg orally). The three test groups 1, 2 and 3 were given ethanol (0.5 g/kg orally), 4-MP (15 mg/kg intraperitoneally) and ranitidine (30 mg/kg intraperitoneally), respectively, 4 hours after giving methanol. Rats were sacrificed and heparinized, cardiac blood samples were collected for blood pH and bicarbonate. Non-heparinized blood samples were collected for formate levels by high performance liquid chromatography. Eye balls were enucleated for histological examination of the retina. Ranitidine corrected metabolic acidosis (p = .025), decreased formate levels (p = .014) and improved the histological findings in the retina induced by acute methanol toxicity.


1995 ◽  
Vol 268 (6) ◽  
pp. E1065-E1069 ◽  
Author(s):  
M. Yamashita ◽  
D. N. Darlington ◽  
E. J. Weeks ◽  
R. O. Jones ◽  
D. S. Gann

Large hemorrhage leads to hypercoagulability, a phenomenon that has never been well explained. Because an elevation of plasminogen activator inhibitor (PAI)-1 increases procoagulant activity, we have determined whether plasma PAI activity and tissue PAI-1 mRNA are elevated after hemorrhage. Sprague-Dawley rats were bled (20 or 15 ml/kg) 4 days after cannulation. Plasma PAI activity was determined by the capacity of plasma to inhibit tissue-type plasminogen activator activity. Changes of PAI-1 mRNA in various tissues were detected by high-performance liquid chromatography after reverse transcription and polymerase chain reaction. Hemorrhage (20 ml/kg) significantly elevated plasma PAI activity at 0.5, 1, 2, 4, 6, and 8 h after hemorrhage and PAI-1 mRNA in liver at 1, 2, 4, and 6 h after hemorrhage. The PAI-1 message was also significantly elevated in lung, heart, and kidney at 4 h after hemorrhage. The increases of PAI-1 mRNA after 20 ml/kg hemorrhage were significantly greater than those after 15 ml/kg hemorrhage. These findings indicate that large hemorrhage can induce the increases in PAI activity and PAI-1 message and suggest that induction of PAI-1 may be involved in the thrombogenic responses observed after large hemorrhage.


2021 ◽  
Vol 17 ◽  
Author(s):  
Xingxing Zhuang ◽  
Li Zhou ◽  
Renhua Miao ◽  
Shoudong Ni ◽  
Meng Li

Introduction:: Asari Radix et Rhizoma (ARR) and dried ginger (Zingiber officinalis) (DG) are often used together in drug preparations in traditional Chinese medicine (TCM) to treat respiratory diseases including cold, bronchitis and pneumonia. Previous studies suggested that ARR and/or DG may influence the pharmacokinetics of other herbal components. In the current study, we examined pharmacokinetic interactions between ARR and DG in rats after oral administration. Methods:: We developed a method based on ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously measure serum concentrations of two active components each in ARR (L-asarinin and sesamin) and DG (6-gingerol and 6-shogaol). Adult Sprague-Dawley rats were starved overnight, then given ARR extract, DO extract, or a co-decoction of ARR and DG by gastric gavage (6 g raw material per kg body weight; n = 6 per group). Blood samples were collected prior to drug administration and at the following times (h) afterward: 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0. Pharmacokinetic parameters were compared using Student’s t test for independent samples. Results:: A simple, rapid, sensitive analytical method has been developed to detect four bioactive components simultaneously in the ARR-DG herbal pair. Pharmacokinetic parameters including Cmax, Tmax, T1/2 and AUC(0~t) were calculated using the non-compartmental model with the DAS 2.0 pharmacokinetic software. For L-asarinin, Tmax was 2.00 ± 0.00 h in ARR animals and 1.67±0.26 h in ARR-DG animals (P<0.05), T1/2 was 8.58 ± 1.75 h in ARR and 11.93 ± 2.13 h in ARR-DG (P<0.05). For 6-gingerol, Cmax was 350.48 ± 23.85 ng/mL in DG animals and 300.21 ± 20.02 ng/mL in ARR-DG (P<0.01), Tmax was 2.83 ± 0.41 h in DG and 2.17 ± 0.41 h in ARR-DG (P<0.05) and AUC(0~t) was 1.93 ± 0.15 mg/mL•h in ARR and 1.70 ± 0.15 mg/mL•h in ARR-DG (P<0.05). For 6-shogaol, Cmax was 390.28 ± 26.02 ng/mL in DG animals and 455.63 ± 31.01 ng/mL in ARR-DG (P<0.01), Tmax was 2.93 ± 0.10 h in DG and 1.92 ± 0.10 h in ARR-DG (P<0.01), T1/2 was 3.74 ± 0.29 h in DG and 3.28 ± 0.22 h in ARR-DG (P<0.01), and AUC(0~t) was 2.15 ± 0.18 mg/mL•h in DG and 2.73 ± 0.15 mg/mL•h in ARR-DG (P<0.01). Conclusions:: Pharmacokinetic interations between ARR and DG decrease Tmax, increase T1/2 but do not affect overall bioavailability of L-asarinin in ARR. The interactions in ARR-DG decrease Cmax and Tmax but increase T1/2 and AUC(0~t) of 6-gingerol in DG. The interactions increase Cmax and AUC(0~t) but decrease Tmax and T1/2 of 6- shogaol in DG. Interactions in ARR-DG do not affect the pharmacokinetics of sesamin.


Sign in / Sign up

Export Citation Format

Share Document