Influence analysis of phase transformation anisotropy of shape memory alloy wires embedded in sandwich plates with flexible cores by a third-order zigzag theory with dynamic three-dimensional elasticity corrections

2018 ◽  
Vol 22 (5) ◽  
pp. 1450-1495 ◽  
Author(s):  
M Shariyat ◽  
A Ghaznavi

This paper is devoted to the investigation of the effects of the realistic tension–compression asymmetry and anisotropy of phase transformations of shape memory alloy wires embedded in composite sandwich plates with auxetic cores on the resulting nonlinear vibrations. A third-order zigzag description of the displacement field that takes into account the thickness variations of the flexible core and a novel three-dimensional dynamic elasticity stress and displacement correction is proposed and employed. The governing equations are extracted based on Hamilton’s principle and solved using an iterative finite element procedure. A comprehensive phase transformation algorithm and a constitutive model that are capable of accurately tracking the nested hysteresis loops and sub-loops and reverse loading of the shape memory alloy are proposed, considering the tension–compression anisotropy. Interactions of the core compliance, auxeticity, and especially, the transformations anisotropy on the dynamic responses are studied numerically and three-dimensional plots are presented for distributions of the martensite volume fraction. Results show that the realistic tension–compression anisotropy of the shape memory alloy material leads to results that are quite different from those based on the assumption of the symmetry of the material properties and significantly increases the differences between the damping roles of the shape memory alloy wires of the upper and lower layers of the sandwich plate.

2019 ◽  
Vol 38 (10) ◽  
pp. 467-477 ◽  
Author(s):  
Yahya Bayat ◽  
Hamid EkhteraeiToussi

Reinforcing a composite beam with shape memory alloy wires may have several benefits such as reduction of buckling risks or elimination of unwanted oscillations. In this paper, the vibration damping of a typical shape memory alloy-reinforced composite or hybrid beam is explored. To formulate the thermo-mechanical behavior of embedded shape memory alloy wires, three-dimensional Panico–Brinson model is employed and tailored to one-dimensional model. This material model can simulate pseudo-elastic and ferro-elastic forms of martensite transformations which occurs in cyclic loadings. Besides, unlike the former studies which rely on classical beam theories, the first-order shear deformation beam theory is used to obtain more accurate estimations of shape memory alloy-wire hysteresis loops and their decaying characteristics. In order to explore the effects of a transient concentrated load applied in the middle of a beam, the governing equations are developed and discretized by differential quadrature–integral quadrature combined method. Incremental time marching solution of the problem is accomplished using the Newmark technique. Results are assessed by comparing with available literature. Considering different types of boundary conditions, the influence of pseudo-elastic and ferro-elastic hysteresis loops on the material damping effects, shape memory alloy volume fraction, and resonance phenomenon is studied in detail.


Author(s):  
Mohammad M Kheirikhah ◽  
Mahdi Khadem ◽  
Peyman Farahpour

In this article, bending behavior of the sandwich plates with embedded shape memory alloy wires in their face sheets is studied. Three-dimensional finite element method is used for constructing and analyzing the sandwich plates with flexible core and two stiff face sheets. Some important points such as continuity conditions of the displacements, satisfaction of inter-laminar transverse shear stresses, conditions of zero transverse shear stresses on the upper and lower surfaces and in-plane and transverse flexibility of the soft core are considered for the accurate modeling of the sandwich plate. Solutions for bending analysis of shape memory alloy wire-reinforced sandwich plates under various transverse loads are presented and the effects of plate dimensions, shape memory alloy wires diameter, boundary conditions and shape memory alloy wires embedding positions are studied. Comparison of the present results in special case with those of the three-dimensional theory of elasticity and some plate theories confirms the accuracy of the proposed model. According to the obtained numerical results, the local behavior of the sandwich plate in bending against various loading conditions was significantly improved by employing the shape memory alloy wires in the face sheets.


2012 ◽  
Vol 729 ◽  
pp. 37-42
Author(s):  
Tarek Y. Elrasasi ◽  
Lajos Daróczi ◽  
Dezső L. Beke

Using our local equilibrium model of the martensitic transformation [ the elastic energy contributions, as the function of martensite volume fraction, ξ, in the phase transformation of single crystalline Cu-11.5wt%Al-5.0wt%Ni shape memory alloy were calculated from our measurements published earlier [. The derivative of the elastic energy δE/δξ=e (E is the total elastic energy stored/released during the austenite to martensite (AM) as well as MA transformation) could be calculated only irrespectively of the ST0 term (T0 is the equilibrium transformation temperature and S is the entropy change of phase transformation). But, since ST0 is independent of ξ, the functions obtained reflect the ξ dependence of e as well as E quantities. From the DSC curves measured at zero uniaxial stress (σ = 0) [, the ξ-T hysteric loop was constructed. Then the e (ξ) curves at fix σ as well as fix T were calculated. The E values obtained from the integral of e (ξ), fit well to the E(σ) as well as E(T) curves calculated from the strain-temperature and stress-temperature curves measured in [.


2016 ◽  
Vol 32 (5) ◽  
pp. 565-577
Author(s):  
Y.-C. Lin ◽  
Y.-L. Chen ◽  
H.-W. Chen

AbstractIn the paper, the influence of shape memory alloy (SMA) by varying the parameters such as volume fraction, orientation, and temperature on the hybrid-SMA composite laminate subjected to low-velocity impact is studied. A theoretical model for the composite laminated plate bonded with SMA reinforced layers is presented. The constitutive relation of the SMA layer is obtained by using the method of micromechanics. The governing relations obtained can be used for theoretical predications of thermomechanical properties of SMA plies in this paper. The analytical expressions for the hybrid SMA composite plate are derived based on Tanaka's constitutive equation and linear phase transformation kinetics presented by Liang and Rogers.The laminated plate theory, first-order shear deformation theory and minimal potential energy principle is utilized to solve the governing equations of the hybrid composite plate and calculate the absorbed energies including tensile, shear and bending.An orthogonal array and analysis of variance is employed to investigate the influence of the mentioned parameters on the energy absorption of the hybrid laminated plate. The results showed that the effects of the phase transformation temperature are more significant than the effects of the volume fraction and orientation of SMA on structural energy absorption.


2017 ◽  
Vol 21 (1) ◽  
pp. 19-76 ◽  
Author(s):  
Maryam Khanjani ◽  
Mahmoud Shakeri ◽  
Mojtaba Sadighi

A new nonlinear finite element model is proposed for the dynamic analysis of cylindrical sandwich panels with shape memory alloy hybrid composite face sheets and flexible core. In order to present a realistic transient vibration analysis, all the material complexities arising from the instantaneous and spatial martensite phase transformation of the shape memory alloy wires are taken into consideration. The one-dimensional constitutive equation proposed by Boyd and Lagoudas is used for modeling the pseudoelastic behavior of the shape memory alloy wires. Since the martensite volume fraction at each point depends on the stress at that point, the phase transformation kinetic equations and the governing equations are coupled together. Therefore, at each time step, an iterative method should be used to solve the highly nonlinear equations. Moreover, considering that the stress resultants generated by the martensite phase transformation in the wires are path-dependent values, an incremental method is used to estimate the increment of the stress resultants at each time step. The governing equations are derived based on the energy method and Newmark time integration method is used to solve the discretized finite element equations. Finally, several numerical examples are presented to examine the effect of various parameters such as intensity of applied pressure load, operating temperature, location of shape memory alloy wires, volume fraction of the shape memory alloy wires, and also boundary conditions upon the loss factor for panels with different aspect ratios.


Author(s):  
Sushant M. Dutta ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

In this paper, we develop a complete mathematical model of a shape memory alloy (SMA) wire actuated by electric power and a bias spring. The operation of the SMA actuator involves different physical phenomena, such as heat transfer, phase transformation with temperature hysteresis, stress–strain variations and electrical resistance variation accompanying the phase transformation. We model each of these phenomena in a modular fashion. A key feature of the proposed model is that one or more of its modules can be extended to fit other SMA applications. At the heart of the proposed model is a dynamic hysteresis model capable of representing minor hysteresis loops. We generate the temperature profile for the hysteresis model using lumped parameter analysis. We extend the variable sublayer model to represent actuator strain and electrical resistance. The dynamic properties of the hysteresis model are developed and are exploited in developing control system strategies. Control simulation case studies are presented.


2011 ◽  
Vol 80-81 ◽  
pp. 22-26
Author(s):  
Bo Zhou ◽  
Shi Cheng Zhao

The temperature memory effect of shape memory alloy (SMA) induced by an incomplete martensitic inverse phase transformation has the potential values in various engineering fields. It is of theoretical and practical interests to establish a phase transformation model which overcomes the limitation that previous phase transformation models of SMA fail to take into account the temperature memory effect. In this paper, the curves of heat flow versus temperature of SMA during the martensitic phase transformation and martensitic inverse phase transformation are described as the quadratic functions of temperature. A new phase transformation model of SMA is developed based on the differential relationship between martensitic volume fraction and phase transformation free energy. Numerical results show that the new model well predicts the phase transformation behaviors of SMA associated with the temperature memory effect.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Edgar Galvan ◽  
Richard Malak

Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.


Sign in / Sign up

Export Citation Format

Share Document