Investigation of the tensile performance and failure mechanism of carbon–aramid hybrid fibers/epoxy sandwich structure laminates using the UV-thermal synergetic curing mechanism: Experimentation and simulation

2018 ◽  
Vol 22 (8) ◽  
pp. 2582-2603
Author(s):  
Jiaojiao Xi ◽  
Xiaoyan Liu ◽  
Zhiqiang Yu

The tensile failure mechanism of carbon–aramid hybrid fibers/epoxy sandwich structure laminates was investigated by using experimental and finite element methods. Double curing agents, triarylsulfonium hexafluoroantimonates and triethylene tetramine with a mass ratio of 4:15 were introduced into the laminates. Sandwich structure laminates, with different proportions of hybrid fibers, were cured by UV-initiated anion/cationic dual curing technique. The results showed that the synergetic curing effects of two curing agents were observed under UV irradiation, leading to the better curing of the system, which further plays a positive influence on the mechanical performance. The tensile properties and failure mechanism of the laminates depended on the stacking sequence and fiber volume fractions of the layer structures. The interplay hybrid laminates, containing three alternate plies with fiber contents of 67.7 vol%, presented the optimal tensile performance, and its tensile strength and modulus were 0.82 GPa and 22.09 GPa, respectively. The fracture morphologies revealed that pull-out and debonding of fibers were the main failure mechanism of hybrid laminates. The performance of sandwich structure laminates was determined by the load-carrying capacity of carbon fiber and load-transferring capacity of the aramid fiber and adhesive. The finite element model based on experiments was established to simulate the stress state and failure mechanism of sandwich laminates. The results demonstrated that the stress was better transferred into carbon fibers from the aramid fibers and adhesive, and the relative error rate of maximum stress from finite element analysis and experimental results was less than 5%, which were in reasonable agreement with the experimental results.

2019 ◽  
Vol 817 ◽  
pp. 514-519 ◽  
Author(s):  
Francesco Finelli ◽  
Angelo Di Tommaso ◽  
Cristina Gentilini

The paper reports the results of a numerical simulation performed to study the experimental pull-out behavior of twisted steel connectors inserted in fired-clay brick units. The experimental results obtained in a previous campaign are used to calibrate a 3D refined numerical model developed by means of the finite element program Abaqus. The numerical model is tuned to accurately reproduce the experimental results in terms of loads and bar displacements.


2020 ◽  
Vol 23 (9) ◽  
pp. 1759-1771
Author(s):  
Bai Zhang ◽  
Hong Zhu ◽  
Jun Chen ◽  
Ou Yang

To study the deterioration of bond performance between concrete and corroded steel bars with designed corrosion levels of 0%, 0.5%, 1.0%, 2.0%, 5.0%, 8.0%, and 10.0%, pull-out tests were performed on cube specimens with the dimensions of 10 D × 10 D × 10 D, where D is the diameter of longitudinal rebars ( D = 14, 20, and 25 mm, respectively). The experimental results indicated that with the specimen dimensions increased, the expansive cracks induced by corrosion products appeared earlier and the maximum expansive cracking width was larger at the same corrosion levels. The bond strength and the initial bond stiffness first increased and then dramatically decreased as the concrete deterioration and reinforcement corrosion levels increased for each specimen dimension, whereas the specimens with the larger diameter ( D = 25 mm) were more sensitive to the corrosion than those with the smaller diameter ( D = 14, 20 mm). The free-end slip and the energy dissipation for each specimen dimensions, which decreased slowly with increasing corrosion levels before the corrosion-induced cracks and then weakened rapidly when the corrosion-induced cracks appeared, was almost independent of the influence on corrosion levels after the corrosion-induced cracks appeared. Based on the experimental results, a simplified expression for the calculation of residual bond stress and an empirical model of the bond–slip constitutive equation that considers the influence of reinforcement corrosion were proposed, which can be used in finite element analysis of corroded reinforced concrete.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2018 ◽  
Vol 55 (1) ◽  
pp. 1-4
Author(s):  
Elena Felicia Beznea ◽  
Ionel Chirica ◽  
Adrian Presura ◽  
Ionel Iacob

The paper is treating the strength analysis of the main deck structure of an inland navigation catamaran for 30 passengers. The main deck should have high stiffness and high strength to resist to external loading and endure high stresses from combined bending and torsion loads. Different materials for sandwich structure of the deck have been analysed by using the Finite Element Method in order to determine the solution which accomplish better designing criteria regarding allowable stress and deformations and total weight.


2020 ◽  
Vol 835 ◽  
pp. 229-242
Author(s):  
Oboso P. Bernard ◽  
Nagih M. Shaalan ◽  
Mohab Hossam ◽  
Mohsen A. Hassan

Accurate determination of piezoelectric properties such as piezoelectric charge coefficients (d33) is an essential step in the design process of sensors and actuators using piezoelectric effect. In this study, a cost-effective and accurate method based on dynamic loading technique was proposed to determine the piezoelectric charge coefficient d33. Finite element analysis (FEA) model was developed in order to estimate d33 and validate the obtained values with experimental results. The experiment was conducted on a piezoelectric disc with a known d33 value. The effect of measuring boundary conditions, substrate material properties and specimen geometry on measured d33 value were conducted. The experimental results reveal that the determined d33 coefficient by this technique is accurate as it falls within the manufactures tolerance specifications of PZT-5A piezoelectric film d33. Further, obtained simulation results on fibre reinforced and particle reinforced piezoelectric composite were found to be similar to those that have been obtained using more advanced techniques. FE-results showed that the measured d33 coefficients depend on measuring boundary condition, piezoelectric film thickness, and substrate material properties. This method was proved to be suitable for determination of d33 coefficient effectively for piezoelectric samples of any arbitrary geometry without compromising on the accuracy of measured d33.


2021 ◽  
Vol 11 (12) ◽  
pp. 5461
Author(s):  
Elmedin Mešić ◽  
Enis Muratović ◽  
Lejla Redžepagić-Vražalica ◽  
Nedim Pervan ◽  
Adis J. Muminović ◽  
...  

The main objective of this research is to establish a connection between orthodontic mini-implant design, pull-out force and primary stability by comparing two commercial mini-implants or temporary anchorage devices, Tomas®-pin and Perfect Anchor. Mini-implant geometric analysis and quantification of bone characteristics are performed, whereupon experimental in vitro pull-out test is conducted. With the use of the CATIA (Computer Aided Three-dimensional Interactive Application) CAD (Computer Aided Design)/CAM (Computer Aided Manufacturing)/CAE (Computer Aided Engineering) system, 3D (Three-dimensional) geometric models of mini-implants and bone segments are created. Afterwards, those same models are imported into Abaqus software, where finite element models are generated with a special focus on material properties, boundary conditions and interactions. FEM (Finite Element Method) analysis is used to simulate the pull-out test. Then, the results of the structural analysis are compared with the experimental results. The FEM analysis results contain information about maximum stresses on implant–bone system caused due to the pull-out force. It is determined that the core diameter of a screw thread and conicity are the main factors of the mini-implant design that have a direct impact on primary stability. Additionally, stresses generated on the Tomas®-pin model are lower than stresses on Perfect Anchor, even though Tomas®-pin endures greater pull-out forces, the implant system with implemented Tomas®-pin still represents a more stressed system due to the uniform distribution of stresses with bigger values.


2006 ◽  
Vol 22 (3) ◽  
pp. 213-220 ◽  
Author(s):  
K. J. Shou ◽  
F. W. Chang

AbstractIn this study, physical and numerical models were used to analyze pipe-soil interaction during pipejacking work. After calibrating with the physical modeling results, the finite element software ABAQUS [1] was used to study the pipejacking related behavior, such as surface subsidence, failure mechanism, pipe-soil interaction, etc. The results show that the driving force in the tunnelling face is very important and critical for pipejacking. Surface subsidence is mainly due to the lack of driving force, however, excessive driving force could cause the unfavorable surface heaving problem. It also suggests that the depth of the pipe is critical to determine a proper driving force to stabilize the tunnelling face.


Sign in / Sign up

Export Citation Format

Share Document