Large deformation of corrugated sandwich panels under three-point bending

2020 ◽  
pp. 109963622092765 ◽  
Author(s):  
Fukun Xia ◽  
Yvonne Durandet ◽  
T X Yu ◽  
Dong Ruan

Corrugated sandwich panels are widely used in engineering applications for their excellent energy absorption and lightweight. In this research, the mechanical response of aluminum corrugated sandwich panels subjected to three-point bending is investigated experimentally, numerically, and theoretically. In the experiments, the sandwich panels were loaded under two conditions, namely base indentation and node indentation. A parametric study is conducted by ABAQUS/explicit to investigate the effects of geometric configurations (corrugation angle, core height, and core thickness) on the deformation mode, peak force, and energy absorption. Both peak force and specific energy absorption vary with the geometric parameters. Theoretical models are further developed to predict the force–displacement curves of the panels under the two loading conditions. The theoretically predicted crushing force is in good agreement with both the experimental and simulated results. Finally, the non-dominated sorting genetic algorithm II is adopted to optimize the geometric configuration to improve the specific energy absorption and reduce the weight of corrugated sandwich panels.

2013 ◽  
Vol 535-536 ◽  
pp. 409-412 ◽  
Author(s):  
Martin Vcelka ◽  
Yvonne Durandet ◽  
Christopher C. Berndt ◽  
Dong Ruan

The collapse modes and energy absorption in three-point bending of composite sandwich beams were explored experimentally. Sandwich beams manufactured from woven carbon fibre face sheets encapsulating aluminium foam cores were investigated at 0.001 s-1 and 100 s-1 strain rates. Three modes of failure were observed during deformation: Modes H1, H2 and H3. The direction of core shear played an important role in the energy absorption of the structure. Mode H2 gave rise to the highest specific energy absorption of the composite sandwich beams studied.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Felix Dionisius ◽  
Jos Istiyanto ◽  
Tito Endramawan ◽  
Andri Andri

Crashworthiness is an ability of a vehicle structure in order to reduce injury when occurred in collision. Crashworthiness criteria are peak force (Fmax), specific energy absorption (SEA), and crush force efficiency (CFE). The part of structure of vehicle in crashworthiness is front rail which is generally tube as thin walled structure. The aim was to know the best design in thin walled square tube as specimen by variance of crush initiator which arranged holes 3 mm of diameter in shaping stripe with 4 holes, then added graded holes in parallelogram to trigon. This research used compression experiment method under quasi static loading with 30 mm/minute of actuator velocity. Optimum design was done by using Multi Criteria Decision Making (MCDM) with Simple Additive Weighting (SAW) modelling. This research presents that specimen with trigon of crush initiator is the best design with 0.98 of decision score in which crashworthiness criteria for peak force, specific energy absorption and crush force efficiency are 19193.81 N; 5100.93 J/kg; and 46.44%.


2016 ◽  
Vol 725 ◽  
pp. 82-87 ◽  
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu

In this study, hollow square carbon fibre reinforced plastic (CFRP) tubes and aluminium sheet wrapped CFRP tubes have been axially crushed at a quasi-static loading velocity of 0.05 mm/s. A specially designed and manufactured platen with four cutting blades was used to cut and crush these two tubular structures. The four cutting blades had height of 5 mm and width of 3 mm with round tip to reduce the initial peak force and achieve a stable crushing deformation mode. Notches at one end of each tube were utilized to control the location of initial failure. The crashworthiness characteristics of hollow CFRP tubes and aluminium sheet wrapped CFRP tubes with notches that crushed by the platen with cutting blades were compared with those of tubes that crushed by a flat platen. Experimental results showed that using the platen with blades to crush the specimens with notches exhibited more stable deformation mode than the specimens without notches. Mean crushing force, energy absorption and specific energy absorption (SEA) increased when CFRP was wrapped with aluminium sheet and crushed by the platen with blades. The increase of average value of mean crushing force, energy absorption and specific energy absorption of aluminium sheet wrapped CFRP tube and crushed by the platen with blades are 16.5%, 17.3% and 5% respectively more than those for hollow tubes that crushed by a flat platen.


2011 ◽  
Vol 5 (1) ◽  
pp. 184-193 ◽  
Author(s):  
Levent Aktay ◽  
Cem Çakıroğlu ◽  
Mustafa Güden

The experimental and numerical quasi-static crushing behaviors of Nomex™ honeycomb-filled thin-walled Al tubes were investigated. The honeycomb filler was modeled using a unit cell model. The numerical model and experimental results have shown that, 6.4 mm and 4.8 mm cell size honeycomb filling had no effect on the deformation mode (diamond); however 3.2 mm cell size honeycomb filling changed the deformation mode to mixed/concertina. Honeycomb filling was also shown to increase the specific energy absorption of filled tubes over that of Al tube. The specific energy absorption of honeycomb filling was further compared with those of tube wall thickening and Al closedcell foam filling.


2018 ◽  
Vol 49 (2) ◽  
pp. 162-180 ◽  
Author(s):  
Zhenyu Wu ◽  
Maolin Wang ◽  
Zhiping Ying ◽  
Xiaoying Cheng ◽  
Xudong Hu

This paper reports the mechanical response of semi-hexagonal part with three different multi-layer reinforcements. Unidirectional, plain woven and orthogonal fabric under quasi-static axial compression were considered. Meso-scale finite element numerical models with failure criterion were also established to simulate the onset and development of internal damage during the compression process. There were two different crush-failure modes occurring in the crush tests of the three different composite samples: a splaying mode for samples with unidirectional fabric, a buckling mode for samples with 3D orthogonal woven fabric and a mixture mode of both buckling and splaying for samples with the plain woven fabric. The samples reinforced by unidirectional fiber have the highest specific energy absorption and lowest peak loading, whereas the samples by 3D orthogonal fabric present the lowest specific energy absorption and highest peak loading. It was also demonstrated by a numerical model that the existence of Z-binder suppresses the delamination by restraining the expanding of warp and weft yarns. The comparison of numerical results and experimental data indicates that the structure of reinforcement has a significant role in the mechanical performance of textile composite.


2020 ◽  
Vol 27 (1) ◽  
pp. 469-483
Author(s):  
Yanfeng Guo ◽  
Meijuan Ji ◽  
Yungang Fu ◽  
Ronghou Xia ◽  
Dan Pan ◽  
...  

AbstractThe paper corrugation tube is an attractive and innovative mode of cushioning protection and energy absorption for the general protection and packaging technology of military and civil products. The aims of this paper focus on the dynamic compression characteristics of four kinds of regular polygonal paper corrugation tubes under the conditions of axial drop impacts, and the influence rules of structural parameters and load parameters on the dynamic cushioning energy absorption. The results show that, the tube direction has a crucial effect on the deformation mode of the paper corrugation tubes, the deformation of X-direction paper corrugation tubes has a stable accordion mode, but that of Y-direction paper corrugation tubes is a mixture of steady progressive buckling and other non-ideal modes. The X-direction paper corrugation tubes have lower peak stress, stable and controllable deformation mode with multiple folds, and higher total energy absorption, unit area energy absorption, specific energy absorption and stroke efficiency than the Y-direction paper corrugation tubes. Moreover, the change of cross-section shape of X-direction paper corrugation tubes has no obvious influence on the total energy absorption, while the total energy absorption of Y-direction paper corrugation tube obviously rises with the increase of the number of cross-section edges of the tubes, but the unit area energy absorption, specific energy absorption and stroke efficiency decrease with the increase of the number of cross-section edges of the tubes. Moreover, the increase of the number of cross-section edges of the tubes made the total energy absorption of Y-direction tubes rise, while the total energy absorption of X-direction tubes has no obvious change. But the unit area energy absorption, specific energy absorption and stroke efficiency decrease with the increase of the number of cross-section edges of the tubes. Furthermore, the tube length, impact block mass and impact energy have also important influence on the cushioning energy absorption of the paper corrugation tubes under axial drop impact.


2019 ◽  
Vol 794 ◽  
pp. 202-207
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Jeong Whan Yoon ◽  
Zhan Yuan Gao

Carbon fibre composite tubes have high strength to weight ratios and outstanding performance under axial crushing. In this paper, square CFRP tubes and aluminium sheet-wrapped CFRP tubes were impacted by a drop mass to investigate the effect of loading velocity on the energy absorption of CFRP/aluminium tubes. A comparison of the quasi-static and dynamic crushing behaviours of tubes was made in terms of deformation mode, peak crushing force, mean crushing force, energy absorption and specific energy absorption. The influence of the number of aluminium layers that wrapped square CFRP tubes on the crushing performance of tubes under axial impact was also examined. Experimental results manifested similar deformation modes of tubes in both quasi-static and dynamic tests. The dynamic peak crushing force was higher than the quasi-static counterpart, while mean crushing force, energy absorption and specific energy absorption were lower in dynamic tests than those in quasi-static tests. The mean crushing force and energy absorption decreased with the crushing velocity and increased with the number of aluminium layers. The impact stroke (when the force starts to drop) decreased with the number of aluminium layers.


2021 ◽  
Vol 1165 ◽  
pp. 47-64
Author(s):  
Saurabh S. Kumar ◽  
Rajesh G. Babu ◽  
U. Magarajan

In this paper, the post ballistic impact behaviour of kevlar-glass fibre hybrid composite laminates was investigated against 9×19 mm projectile. Eight different types of composite laminates with different ratios of kevlar woven fibre to glass fibre were fabricated using hand lay-up with epoxy matrix. Ballistic behaviour like ballistic Limit (V50), energy absorption, specific energy absorption and Back Face Signature (BFS) were studied after bullet impact. The results indicated that as the Percentage of glass fibre is increased there was a linear increment in the ballistic behaviour. Addition of 16% kevlar fabric, composite sample meets the performance requirement of NIJ0101.06 Level III-A. Since the maximum specific energy absorption was observed in Pure Kevlar samples and the adding of glass fibre increases the weight and Areal Density of the sample, further investigations need to be carried out to utilize the potential of glass fibre for ballistic applications.


2019 ◽  
Vol 159 ◽  
pp. 424-440 ◽  
Author(s):  
T.J. Reddy ◽  
V. Narayanamurthy ◽  
Y.V.D. Rao

Sign in / Sign up

Export Citation Format

Share Document